ﻻ يوجد ملخص باللغة العربية
The $Lambda$CDM model of structure formation makes strong predictions on concentration and shape of DM (dark matter) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric test of the $Lambda$CDM model. Accurate and precise measurements needs a full three-dimensional analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular CLASH (Cluster Lensing And Supernova survey with Hubble) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev-Zeldovich effect. The cluster shapes and concentrations are consistent with $Lambda$CDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being not so effective in making halos rounder.
The leading tensions to the collisionless cold dark matter (CDM) paradigm are the small-scale controversies, discrepancies between observations at the dwarf-galactic scale and their simulational counterparts. In this work we consider methods to infer
The cosmological constant $Lambda$ and cold dark matter (CDM) model ($Lambdatext{CDM}$) is one of the pillars of modern cosmology and is widely used as the de facto theoretical model by current and forthcoming surveys. As the nature of dark energy is
We consider methods with which to answer the question is any observed galaxy cluster too unusual for Lambda-CDM? After emphasising that many previous attempts to answer this question will overestimate the confidence level at which Lambda-CDM can be r
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth fact
In this work we discuss a general approach for the dissipative dark matter considering a nonextensive bulk viscosity and taking into account the role of generalized Friedmann equations. This generalized $Lambda$CDM model encompasses a flat universe w