ﻻ يوجد ملخص باللغة العربية
The voter model with memory-dependent dynamics is theoretically and numerically studied at the mean-field level. The `internal age, or time an individual spends holding the same state, is added to the set of binary states of the population, such that the probability of changing state (or activation probability $p_i$) depends on this age. A closed set of integro-differential equations describing the time evolution of the fraction of individuals with a given state and age is derived, and from it analytical results are obtained characterizing the behavior of the system close to the absorbing states. In general, different age-dependent activation probabilities have different effects on the dynamics. When the activation probability $p_i$ is an increasing function of the age $i$, the system reaches a steady state with coexistence of opinions. In the case of aging, with $p_i$ being a decreasing function, either the system reaches consensus or it gets trapped in a frozen state, depending on the value of $p_infty$ (zero or not) and the velocity of $p_i$ approaching $p_infty$. Moreover, when the system reaches consensus, the time ordering of the system can be exponential ($p_infty>0$) or power-law like ($p_infty=0$). Exact conditions for having one or another behavior, together with the equations and explicit expressions for the exponents, are provided.
We study memory dependent binary-state dynamics, focusing on the noisy-voter model. This is a non-Markovian process if we consider the set of binary states of the population as the description variables, or Markovian if we incorporate age, related to
We consider the process of reaching the final state in the coevolving voter model. There is a coevolution of state dynamics, where a node can copy a state from a random neighbor with probabilty $1-p$ and link dynamics, where a node can re-wire its li
Human languages evolve continuously, and a puzzling problem is how to reconcile the apparent robustness of most of the deep linguistic structures we use with the evidence that they undergo possibly slow, yet ceaseless, changes. Is the state in which
We introduce a non-linear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have an unan
We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the