ﻻ يوجد ملخص باللغة العربية
We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the exit probability and the consensus time at the transition point. The mean-field formalism is extended to the case that the interaction pattern is given by generic heterogeneous networks. We finally discuss the case of random regular networks and compare analytical results with simulations.
We propose a generalized framework for the study of voter models in complex networks at the the heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes and (ii) allows for the introduction of furthe
We introduce a non-linear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have an unan
We investigate the long-time properties of a dynamic, out-of-equilibrium, network of individuals holding one of two opinions in a population consisting of two communities of different sizes. Here, while the agents opinions are fixed, they have a pref
Mean-field analysis is an important tool for understanding dynamics on complex networks. However, surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and this is particularly true for real-world
The voter model with memory-dependent dynamics is theoretically and numerically studied at the mean-field level. The `internal age, or time an individual spends holding the same state, is added to the set of binary states of the population, such that