ﻻ يوجد ملخص باللغة العربية
We study memory dependent binary-state dynamics, focusing on the noisy-voter model. This is a non-Markovian process if we consider the set of binary states of the population as the description variables, or Markovian if we incorporate age, related to the time one has spent holding the same state, as a part of the description. We show that, in some cases, the model can be reduced to an effective Markovian process, where the age distribution of the population rapidly equilibrates to a quasi-steady state, while the global state of the system is out of equilibrium. This effective Markovian process shares the same phenomenology of the non-linear noisy-voter model and we establish a clear parallelism between these two extensions of the noisy-voter model.
The voter model with memory-dependent dynamics is theoretically and numerically studied at the mean-field level. The `internal age, or time an individual spends holding the same state, is added to the set of binary states of the population, such that
A general formalism is introduced to allow the steady state of non-Markovian processes on networks to be reduced to equivalent Markovian processes on the same substrates. The example of an epidemic spreading process is considered in detail, where all
Employing the quadratic fermionic Hamiltonians for the collective and internal subsystems with a linear coupling, we studied the role of fermionic statistics on the dynamics of the collective motion. The transport coefficients are discussed as well a
We introduce a non-linear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have an unan
We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time markovian walk g