ﻻ يوجد ملخص باللغة العربية
Lagrangian techniques, such as the finite-time Lyapunov exponent (FTLE) and hyperbolic Lagrangian coherent structures (LCS), have become popular tools for analyzing unsteady fluid flows. These techniques identify regions where particles transported by a flow will converge to and diverge from over a finite-time interval, even in a divergence-free flow. Lagrangian analyses, however, are time consuming and computationally expensive, hence unsuitable for quickly assessing short-term material transport. A recently developed method called OECSs [Serra, M. and Haller, G., `Objective Eulerian Coherent Structures, Chaos 26(5), 2016] rigorously connected Eulerian quantities to short-term Lagrangian transport. This Eulerian method is faster and less expensive to compute than its Lagrangian counterparts, and needs only a single snapshot of a velocity field. Along the same line, here we define the instantaneous Lyapunov Exponent (iLE), the instantaneous counterpart of the FTLE, and connect the Taylor series expansion of the right Cauchy-Green deformation tensor to the infinitesimal integration time limit of the FTLE. We illustrate our results on geophysical fluid flows from numerical models as well as analytical flows, and demonstrate the efficacy of attracting and repelling instantaneous Lyapunov exponent structures in predicting short-term material transport.
Many-site Bose-Hubbard lattices display complex semiclassical dynamics, with both chaotic and regular features. We have characterised chaos in the semiclassical dynamics of short Bose-Hubbard chains using both stroboscopic phase space projections and
This work is devoted to further consideration of the Henon map with negative values of the shrinking parameter and the study of transient oscillations, multistability, and possible existence of hidden attractors. The computation of the finite-time Ly
The scaling behavior of the maximal Lyapunov exponent in chaotic systems with time-delayed feedback is investigated. For large delay times it has been shown that the delay-dependence of the exponent allows a distinction between strong and weak chaos,
There are two main strategies for improving the projection-based reduced order model (ROM) accuracy: (i) improving the ROM, i.e., adding new terms to the standard ROM; and (ii) improving the ROM basis, i.e., constructing ROM bases that yield more acc
We investigate the stability of a one-parameter family of periodic solutions of the four-vortex problem known as `leapfrogging orbits. These solutions, which consist of two pairs of identical yet oppositely-signed vortices, were known to W. Grobli (1