ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-time and exact Lyapunov dimension of the Henon map

75   0   0.0 ( 0 )
 نشر من قبل Nikolay Kuznetsov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is devoted to further consideration of the Henon map with negative values of the shrinking parameter and the study of transient oscillations, multistability, and possible existence of hidden attractors. The computation of the finite-time Lyapunov exponents by different algorithms is discussed. A new adaptive algorithm for the finite-time Lyapunov dimension computation in studying the dynamics of dimension is used. Analytical estimates of the Lyapunov dimension using the localization of attractors are given. A proof of the conjecture on the Lyapunov dimension of self-excited attractors and derivation of the exact Lyapunov dimension formula are revisited.



قيم البحث

اقرأ أيضاً

It is shown that critical phenomena associated with Siegel disk, intrinsic to 1D complex analytical maps, survives in 2D complex invertible dissipative H{e}non map. Special numerical method of estimation of the Siegel disk scaling center position (fo r 1D maps it corresponds to extremum) for multi-dimensional invertible maps are developed.
Lagrangian techniques, such as the finite-time Lyapunov exponent (FTLE) and hyperbolic Lagrangian coherent structures (LCS), have become popular tools for analyzing unsteady fluid flows. These techniques identify regions where particles transported b y a flow will converge to and diverge from over a finite-time interval, even in a divergence-free flow. Lagrangian analyses, however, are time consuming and computationally expensive, hence unsuitable for quickly assessing short-term material transport. A recently developed method called OECSs [Serra, M. and Haller, G., `Objective Eulerian Coherent Structures, Chaos 26(5), 2016] rigorously connected Eulerian quantities to short-term Lagrangian transport. This Eulerian method is faster and less expensive to compute than its Lagrangian counterparts, and needs only a single snapshot of a velocity field. Along the same line, here we define the instantaneous Lyapunov Exponent (iLE), the instantaneous counterpart of the FTLE, and connect the Taylor series expansion of the right Cauchy-Green deformation tensor to the infinitesimal integration time limit of the FTLE. We illustrate our results on geophysical fluid flows from numerical models as well as analytical flows, and demonstrate the efficacy of attracting and repelling instantaneous Lyapunov exponent structures in predicting short-term material transport.
Accumulation point of period-tripling bifurcations for complexified Henon map is found. Universal scaling properties of parameter space and Fourier spectrum intrinsic to this critical point is demonstrated.
Many-site Bose-Hubbard lattices display complex semiclassical dynamics, with both chaotic and regular features. We have characterised chaos in the semiclassical dynamics of short Bose-Hubbard chains using both stroboscopic phase space projections and finite-time Lyapunov exponents. We found that chaos was present for intermediate collisional nonlinearity in the open trimer and quatramer systems, with soft chaos and Kolmogoroff-Arnold-Moser islands evident. We have found that the finite-time Lyapunov exponents are consistent with stroboscopic maps for the prediction of chaos in these small systems. This gives us confidence that the finite-time Lyapunov exponents will be a useful tool for the characterisation of chaos in larger systems, where meaningful phase-space projections are not possible and the dimensionality of the problem can make the standard methods intractable.
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable directions by translating the problem to the language of scale-invariant growing surfaces. We find that the so-called characteristic LVs exhibit spatial localization, strong clustering around given spatiotemporal loci, and remarkable dynamic scaling properties of the corresponding surfaces. In contrast, the commonly used backward LVs (obtained through Gram-Schmidt orthogonalization) spread all over the system and do not exhibit dynamic scaling due to artifacts in the dynamical correlations by construction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا