ﻻ يوجد ملخص باللغة العربية
The expansion of a modular graph function on a torus of modulus $tau$ near the cusp is given by a Laurent polynomial in $y= pi Im (tau)$ with coefficients that are rational multiples of single-valued multiple zeta-values, apart from the leading term whose coefficient is rational and exponentially suppressed terms. We prove that the coefficients of the non-leading terms in the Laurent polynomial of the modular graph function $D_N(tau)$ associated with a melon graph is free of irreducible multiple zeta-values and can be written as a polynomial in odd zeta-values with rational coefficients for arbitrary $N geq 0$. The proof proceeds by expressing a generating function for $D_N(tau)$ in terms of an integral over the Virasoro-Shapiro closed-string tree amplitude.
The integral of an arbitrary two-loop modular graph function over the fundamental domain for $SL(2,Z)$ in the upper half plane is evaluated using recent results on the Poincare series for these functions.
The concept and the construction of modular graph functions are generalized from genus-one to higher genus surfaces. The integrand of the four-graviton superstring amplitude at genus-two provides a generating function for a special class of such func
In earlier work we studied features of non-holomorphic modular functions associated with Feynman graphs for a conformal scalar field theory on a two-dimensional torus with zero external momenta at all vertices. Such functions, which we will refer to
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop
This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring