ﻻ يوجد ملخص باللغة العربية
We present an analytical low-energy theory of piezoelectric electron-phonon interactions in undoped Weyl semimetals, taking into account also Coulomb interactions. We show that piezoelectric interactions generate a long-range attractive potential between Weyl fermions. This potential comes with a characteristic angular anisotropy. From the one-loop renormalization group approach and a mean-field analysis, we predict that superconducting phases with either conventional s-wave singlet pairing or nodal-line triplet pairing could be realized for sufficiently strong piezoelectric coupling. For small couplings, we show that the quasi-particle decay rate exhibits a linear temperature dependence where the prefactor vanishes only in a logarithmic manner as the quasi-particle energy approaches the Weyl point. For practical estimates, we consider the Weyl semimetal TaAs.
There is considerable current interest to explore electronic topology in strongly correlated metals, with heavy fermion systems providing a promising setting. Recently, a Weyl-Kondo semimetal phase has been concurrently discovered in theoretical and
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly intera
Energy transfer from electrons to phonons is an important consideration in any Weyl or Dirac semimetal based application. In this work, we analytically calculate the cooling power of acoustic phonons, i.e. the energy relaxation rate of electrons whic
The search for a material platform for topological quantum computation has recently focused on unconventional superconductors. Such material systems, where the superconducting order parameter breaks a symmetry of the crystal point group, are capable
We report on a study of intrinsic superconductivity in a Weyl metal, i.e. a doped Weyl semimetal. Two distinct superconducting states are possible in this system in principle: a zero-momentum pairing BCS state, with point nodes in the gap function; a