ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Luttinger arcs in Weyl semimetals

145   0   0.0 ( 0 )
 نشر من قبل Osakpolor Eki Obakpolor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly interacting systems, namely, Luttinger arcs, defined as zeros of the electron Greens function. The Luttinger arcs connect surface projections of Weyl nodes of opposite chirality and form closed loops with the Fermi arcs when the Weyl nodes are undoped. Upon doping, the ends of the Fermi and Luttinger arcs separate and the intervening regions get filled by surface projections of bulk Fermi surfaces. For bilayered Weyl semimetals, we prove two remarkable implications: (i) the precise shape of the Luttinger arcs can be determined experimentally by removing a surface layer. We use this principle to sketch the Luttinger arcs for Co and Sn terminations in Co$_{3}$Sn$_{2}$S$_{2}$; (ii) the area enclosed by the Fermi and Luttinger arcs equals the surface particle density to zeroth order in the interlayer couplings. We argue that the approximate equivalence survives interactions that are weak enough to leave the system in the Weyl limit, and term this phenomenon weak Luttingers theorem.

قيم البحث

اقرأ أيضاً

We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculatio ns on a lattice model exhibiting Weyl Fermi-arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the surface (i.e. they lose their purely surface spectral character). Thus, we provide strong numerical evidence that the Weyl Fermi-arcs are not topologically protected from disorder. Nonetheless, the surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way to the Anderson-localized phase by forming localized current loops that live within the localization length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of disorder, but the surface chiral velocity is.
It is well known that on the surface of Weyl semimetals, Fermi arcs appear as the topologically protected surface states. In this work, we give a semiclassical explanation for the morphology of the surface Fermi arcs. Viewing the surface states as a two-dimensional Fermi gas subject to band bending and Berry curvatures, we show that it is the non-parallelism between the velocity and the momentum that gives rise to the spiraling Fermi arcs. We map out the Fermi arcs from the velocity field for a single Weyl point and a lattice with two Weyl points. We also investigate the surface magnetoplasma of Dirac semimetals in a magnetic field. In this case, the surface states obtains chiral nature from both drift motion and the chiral magnetic effect, resulting in Fermi arcs. We also discuss the important role played by the Imbert-Fedorov shift in the formation of surface Fermi arcs.
We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-Luttinger liquid formalism. Including impurity scatterings, we inspect the localization effect and the temperature dependence of the electrical resistivity. The effect of a large number of Weyl points in real materials is also discussed.
Energy transfer from electrons to phonons is an important consideration in any Weyl or Dirac semimetal based application. In this work, we analytically calculate the cooling power of acoustic phonons, i.e. the energy relaxation rate of electrons whic h are interacting with acoustic phonons, for Weyl and Dirac semimetals in a variety of different situations. For cold Weyl or Dirac semimetals with the Fermi energy at the nodal points, we find the electronic temperature, $T_e$, decays in time as a power law. In the heavily doped regime, $T_e$ decays linearly in time far away from equilibrium. In a heavily doped system with short-range disorder we predict the cooling power of acoustic phonons is drastically increased because of an enhanced energy transfer between electrons and phonons. When an external magnetic field is applied to an undoped system, the cooling power is linear in magnetic field strength and $T_e$ has square root decay in time, independent of magnetic field strength over a range of values.
95 - Y. C. Liu , V. Wang , J. B. Lin 2021
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubi c-Weyl semimetal with a single Weyl point. The Fermi arcs of topological surface states in Weyl semimetals with single- and double-pair Weyl points are investigated systematically. The evolution of the Fermi arcs of surface states variating with the boundary parameter is investigated and the topological Lifshitz phase transition of the Fermi arc connection is clearly demonstrated. Besides, the boundary condition for the double parallel flat boundary of Weyl semimetal is deduced with a Lagrangian formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا