ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in Weyl metals

68   0   0.0 ( 0 )
 نشر من قبل Anton Burkov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a study of intrinsic superconductivity in a Weyl metal, i.e. a doped Weyl semimetal. Two distinct superconducting states are possible in this system in principle: a zero-momentum pairing BCS state, with point nodes in the gap function; and a finite-momentum FFLO-like state, with a full nodeless gap. We find that, in an inversion-symmetric Weyl metal the odd-parity BCS state has a lower energy than the FFLO state, despite the nodes in the gap. The FFLO state, on the other hand, may have a lower energy in a noncentrosymmetric Weyl metal, in which Weyl nodes of opposite chirality have different energy. However, realizing the FFLO state is in general very difficult since the paired states are not related by any exact symmetry, which precludes a weak-coupling superconducting instability. We also discuss some of the physical properties of the nodal BCS state, in particular Majorana and Fermi arc surface states.

قيم البحث

اقرأ أيضاً

The search for a material platform for topological quantum computation has recently focused on unconventional superconductors. Such material systems, where the superconducting order parameter breaks a symmetry of the crystal point group, are capable of hosting novel phenomena, including emergent Majorana quasiparticles. Unique among unconventional superconductors is the recently discovered UTe2, where spin-triplet superconductivity emerges from a paramagnetic normal state. Although UTe2 could be considered a relative of a family of known ferromagnetic superconductors, the unique crystal structure of this material and experimentally suggested zero Curie temperature pose a great challenge to determining the symmetries, magnetism, and topology underlying the superconducting state. These emergent properties will determine the utility of UTe2 for future spintronics and quantum information applications. Here, we report observations of a non-zero polar Kerr effect and of two transitions in the specific heat upon entering the superconducting state, which together show that the superconductivity in UTe2 is characterized by an order parameter with two components that breaks time reversal symmetry. These data allow us to place firm constraints on the symmetries of the order parameter, which strongly suggest that UTe2 is a Weyl superconductor that hosts chiral Fermi arc surface states.
The dynamo effect is a class of macroscopic phenomena responsible for generation and maintaining magnetic fields in astrophysical bodies. It hinges on hydrodynamic three-dimensional motion of conducting gases and plasmas that achieve high hydrodynami c and/or magnetic Reynolds numbers due to large length scales involved. The existing laboratory experiments modeling dynamos are challenging and involve large apparatuses containing conducting fluids subject to fast helical flows. Here we propose that electronic solid-state materials -- in particular, hydrodynamic metals -- may serve as an alternative platform to observe some aspects of the dynamo effect. Motivated by recent experimental developments, this paper focuses on hydrodynamic Weyl semimetals, where the dominant scattering mechanism is due to interactions. We derive Navier-Stokes equations along with equations of magneto-hydrodynamics that describe transport of Weyl electron-hole plasma appropriate in this regime. We estimate the hydrodynamic and magnetic Reynolds numbers for this system. The latter is a key figure of merit of the dynamo mechanism. We show that it can be relatively large to enable observation of the dynamo-induced magnetic field bootstrap in experiment. Finally, we generalize the simplest dynamo instability model -- Ponomarenko dynamo -- to the case of a hydrodynamic Weyl semimetal and show that the chiral anomaly term reduces the threshold magnetic Reynolds number for the dynamo instability.
We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a $T$-matrix approach, we study resonant scattering due to a localized impurity in tight bindi
95 - Jinho Yang , Ki-Seok Kim 2021
Axion electrodynamics governs electromagnetic properties of Weyl metals. Although transmission and reflection measurements of light have been proposed to confirm the axion electrodynamics, there are still lack of theoretical proposals for macroscopic nonlocal transport phenomena in Weyl metals. In this paper, we present nonlocal transport phenomena in time reversal symmetry-broken (TRSB) Weyl metals. Solving the axion electrodynamics numerically, we show that such nonlocal transport phenomena arise from the negative longitudinal magneto-resistivity (NLMR), combined with the anomalous Hall effect (AHE) in the axion electrodynamics. Since this nonlocal transport occurs beyond the mesoscopic scale, we conclude that these nonlocal properties have nothing to do with Fermi arcs, regarded to be clear evidence of the axion electrodynamics in the bulk.
We present an analytical low-energy theory of piezoelectric electron-phonon interactions in undoped Weyl semimetals, taking into account also Coulomb interactions. We show that piezoelectric interactions generate a long-range attractive potential bet ween Weyl fermions. This potential comes with a characteristic angular anisotropy. From the one-loop renormalization group approach and a mean-field analysis, we predict that superconducting phases with either conventional s-wave singlet pairing or nodal-line triplet pairing could be realized for sufficiently strong piezoelectric coupling. For small couplings, we show that the quasi-particle decay rate exhibits a linear temperature dependence where the prefactor vanishes only in a logarithmic manner as the quasi-particle energy approaches the Weyl point. For practical estimates, we consider the Weyl semimetal TaAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا