ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic nuclear Skyrme matter in imbalanced Fermi superfluids with a multicomponent order parameter

89   0   0.0 ( 0 )
 نشر من قبل Albert Samoilenka
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cooper-pair formation in a system of imbalanced fermions leads to the well-studied Fulde-Ferrell or Larkin-Ovchinnikov superfluid state. In the former case the system forms spontaneous phase gradients while in the latter case it forms a stripelike or a crystal-like density gradient. We show that in multicomponent imbalanced mixtures, the superfluid states can be very different from the Fulde-Ferrell-Larkin-Ovchinnikov states. The system generates gradients in both densities and phases by forming three-dimensional vortex-antivortex lattices or lattices of linked vortex loops. The solutions share some properties with the ostensibly unrelated Skyrme model of densely packed baryons and can be viewed as synthetic realization of nuclear Skyrme matter.


قيم البحث

اقرأ أيضاً

The core structure of multiply quantized vortices is theoretically investigated in fermionic superfluid near Feshbach resonance. Under population imbalance in two hyperfine spin states, the vortex core is filled in by the ``paramagnetic moment. Here, we find the spatial oscillation of the magnetization inside the core sensitively due to the topological structure of the pairing field, in the range from the weak coupling regime to the unitary limit. This magnetization inside the giant core reveals the winding number of the vortex and directly results from the low-lying quasiparticle states bound inside the core. It is therefore proposed that the density profile experiment using phase contrast imaging can provide the spectroscopy of novel core level structures in giant vortices. To help the understanding on these outcomes, we also derive the analytic solution for the low-lying quasiparticle states inside the core of a multiply quantized vortex.
We present a ^{115}In NMR study of the quasi two-dimensional heavy-fermion superconductor CeCoIn_5 believed to host a Fulde-Ferrel-Larkin-Ovchinnkov (FFLO) state. In the vicinity of the upper critical field and with a magnetic field applied parallel to the ab-plane, the NMR spectrum exhibits a dramatic change below T*(H) which well coincides with the position of reported anomalies in specific heat and ultrasound velocity. We argue that our results provide the first microscopic evidence for the occurrence of a spatially modulated superconducting order parameter expected in a FFLO state. The NMR spectrum also implies an anomalous electronic structure of vortex cores.
We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL st ructure phase is stabilized at intermediate fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy.
We theoretically investigate the ground state of trapped neutral fermions with population imbalance in the BCS-BEC crossover regime. On the basis of the single-channel Hamiltonian, we perform full numerical calculations of the Bogoliubov-de Gennes eq uation coupled with the regularized gap and number equations. The zero-temperature phase diagram in the crossover regime is presented, where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state governs the weak-coupling BCS region of a resonance. It is found that the FFLO oscillation vanishes in the BEC side, in which the system under population imbalance turns into a phase separation (PS) between locally binding superfluid and fully polarized spin domains. We also demonstrate numerical calculations with a large particle number O(10^5), comparable to that observed in recent experiments. The resulting density profile on a resonance yields the PS, which is in good agreement with the recent experiments, while the FFLO modulation exists in the pairing field. It is also proposed that the most favorable location for the detection of the FFLO oscillation is in the vicinity of the critical population imbalance in the weak coupling BCS regime, where the oscillation periodicity becomes much larger than the interparticle spacing. Finally, we analyze the radio-frequency (RF) spectroscopy in the imbalanced system. The clear difference in the RF spectroscopy between BCS and BEC sides reveals the structure of the pairing field and local ``magnetization.
89 - Hiromitsu Takeuchi 2017
The domain-area distribution in the phase transition dynamics of ${rm Z}_2$ symmetry breaking is studied theoretically and numerically for segregating binary Bose--Einstein condensates in quasi-two-dimensional systems. Due to the dynamic scaling law of the phase ordering kinetics, the domain-area distribution is described by a universal function of the domain area, rescaled by the mean distance between domain walls. The scaling theory for general coarsening dynamics in two dimensions hypothesizes that the distribution during the coarsening dynamics has a hierarchy with the two scaling regimes, the microscopic and macroscopic regimes with distinct power-law exponents. The power law in the macroscopic regime, where the domain size is larger than the mean distance, is universally represented with the Fishers exponent of the percolation theory in two dimensions. On the other hand, the power-law exponent in the microscopic regime is sensitive to the microscopic dynamics of the system. This conjecture is confirmed by large-scale numerical simulations of the coupled Gross--Pitaevskii equation for binary condensates. In the numerical experiments of the superfluid system, the exponent in the microscopic regime anomalously reaches to its theoretical upper limit of the general scaling theory. The anomaly comes from the quantum-fluid effect in the presence of circular vortex sheets, described by the hydrodynamic approximation neglecting the fluid compressibility. It is also found that the distribution of superfluid circulation along vortex sheets obeys a dynamic scaling law with different power-law exponents in the two regimes. An analogy to quantum turbulence on the hierarchy of vorticity distribution and the applicability to chiral superfluid $^3$He in a slab are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا