ﻻ يوجد ملخص باللغة العربية
The domain-area distribution in the phase transition dynamics of ${rm Z}_2$ symmetry breaking is studied theoretically and numerically for segregating binary Bose--Einstein condensates in quasi-two-dimensional systems. Due to the dynamic scaling law of the phase ordering kinetics, the domain-area distribution is described by a universal function of the domain area, rescaled by the mean distance between domain walls. The scaling theory for general coarsening dynamics in two dimensions hypothesizes that the distribution during the coarsening dynamics has a hierarchy with the two scaling regimes, the microscopic and macroscopic regimes with distinct power-law exponents. The power law in the macroscopic regime, where the domain size is larger than the mean distance, is universally represented with the Fishers exponent of the percolation theory in two dimensions. On the other hand, the power-law exponent in the microscopic regime is sensitive to the microscopic dynamics of the system. This conjecture is confirmed by large-scale numerical simulations of the coupled Gross--Pitaevskii equation for binary condensates. In the numerical experiments of the superfluid system, the exponent in the microscopic regime anomalously reaches to its theoretical upper limit of the general scaling theory. The anomaly comes from the quantum-fluid effect in the presence of circular vortex sheets, described by the hydrodynamic approximation neglecting the fluid compressibility. It is also found that the distribution of superfluid circulation along vortex sheets obeys a dynamic scaling law with different power-law exponents in the two regimes. An analogy to quantum turbulence on the hierarchy of vorticity distribution and the applicability to chiral superfluid $^3$He in a slab are also discussed.
Domain size distribution in phase separating binary Bose--Einstein condensates is studied theoretically by numerically solving the Gross--Pitaevskii equations at zero temperature. We show that the size distribution in the domain patterns arising from
Percolation theory is applied to the phase-transition dynamics of domain pattern formation in segregating binary Bose--Einstein condensates in quasi-two-dimensional systems. Our finite-size-scaling analysis shows that the percolation threshold of the
We revisit the fundamental problem of the splitting instability of a doubly quantized vortex in uniform single-component superfluids at zero temperature. We analyze the system-size dependence of the excitation frequency of a doubly quantized vortex t
Critical behavior developed near a quantum phase transition, interesting in its own right, offers exciting opportunities to explore the universality of strongly-correlated systems near the ground state. Cold atoms in optical lattices, in particular,
The collective behavior of a many-body system near a continuous phase transition is insensitive to the details of its microscopic physics[1]. Characteristic features near the phase transition are that the thermodynamic observables follow generalized