ترغب بنشر مسار تعليمي؟ اضغط هنا

Imbalanced Superfluid Phase of a Trapped Fermi Gas in the BCS-BEC Crossover Regime

275   0   0.0 ( 0 )
 نشر من قبل Takeshi Mizushima
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate the ground state of trapped neutral fermions with population imbalance in the BCS-BEC crossover regime. On the basis of the single-channel Hamiltonian, we perform full numerical calculations of the Bogoliubov-de Gennes equation coupled with the regularized gap and number equations. The zero-temperature phase diagram in the crossover regime is presented, where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state governs the weak-coupling BCS region of a resonance. It is found that the FFLO oscillation vanishes in the BEC side, in which the system under population imbalance turns into a phase separation (PS) between locally binding superfluid and fully polarized spin domains. We also demonstrate numerical calculations with a large particle number O(10^5), comparable to that observed in recent experiments. The resulting density profile on a resonance yields the PS, which is in good agreement with the recent experiments, while the FFLO modulation exists in the pairing field. It is also proposed that the most favorable location for the detection of the FFLO oscillation is in the vicinity of the critical population imbalance in the weak coupling BCS regime, where the oscillation periodicity becomes much larger than the interparticle spacing. Finally, we analyze the radio-frequency (RF) spectroscopy in the imbalanced system. The clear difference in the RF spectroscopy between BCS and BEC sides reveals the structure of the pairing field and local ``magnetization.



قيم البحث

اقرأ أيضاً

291 - H. Tajima , R. Hanai , 2015
We theoretically investigate the uniform spin susceptibility $chi$ in the superfluid phase of an ultracold Fermi gas in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region. In our previous paper [H. Tajima, {it et. a l.}, Phys. Rev. A {bf 89}, 033617 (2014)], including pairing fluctuations within an extended $T$-matrix approximation (ETMA), we showed that strong pairing fluctuations cause the so-called spin-gap phenomenon, where $chi$ is anomalously suppressed even in the normal state near the superfluid phase transition temperature $T_{rm c}$. In this paper, we extend this work to the superfluid phase below $T_{rm c}$, to clarify how this many-body phenomenon is affected by the superfluid order. From the comparison of the ETMA $chi$ with the Yosida function describing the spin susceptibility in a weak-coupling BCS superfluid, we identify the region where pairing fluctuations crucially affect this magnetic quantity below $T_{rm c}$ in the phase diagram with respect to the strength of a pairing interaction and the temperature. This spin-gap regime is found to be consistent with the previous pseudogap regime determined from the pseudogapped density of states. We also compare our results with a recent experiment on a $^6$Li Fermi gas. Since the spin susceptibility is sensitive to the formation of spin-singlet preformed pairs, our results would be useful for the study of pseudogap physics in an ultracold Fermi gas on the viewpoint of the spin degrees of freedom.
We determine the energetically lowest lying states in the BEC-BCS crossover regime of s-wave interacting two-component Fermi gases under harmonic confinement by solving the many-body Schrodinger equation using two distinct approaches. Essentially exa ct basis set expansion techniques are applied to determine the energy spectrum of systems with N=4 fermions. Fixed-node diffusion Monte Carlo methods are applied to systems with up to N=20 fermions, and a discussion of different guiding functions used in the Monte Carlo approach to impose the proper symmetry of the fermionic system is presented. The energies are calculated as a function of the s-wave scattering length a_s for N=2-20 fermions and different mass ratios kappa of the two species. On the BEC and BCS sides, our energies agree with analytically-determined first-order correction terms. We extract the scattering length and the effective range of the dimer-dimer system up to kappa = 20. Our energies for the strongly-interacting trapped system in the unitarity regime show no shell structure, and are well described by a simple expression, whose functional form can be derived using the local density approximation, with one or two parameters. The universal parameter xi for the trapped system for various kappa is determined, and comparisons with results for the homogeneous system are presented.
418 - S. N. Klimin 2018
We report the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature effective field theory [Phys. Rev. A $bf{94}$, 023620 (2016)]. A non-monotonic resonant dependence of the free energy as a function of the temperature and the rotation frequency is revealed for a two-band superfluid. We particularly focus on novel features that appear as a result of interband interactions and can be experimentally resolved. The resonant dependence of the free energy is directly manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range below the critical temperature $T_{c}$. Significantly different behavior of vortex matter as a function of the interband coupling is revealed in the BCS and BEC regimes.
We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of external magnetic field. We investigate the dynamics of the condensate order parameter and pair wavefunction for a range of field strengths. When the abrupt jump is sufficient to span the BCS to BEC crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in the 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance system at 202.1 gauss, we comment on the integrity of the fast sweet projection technique as a vehicle to explore the condensed phase in the crossover region
We present a numerical study of the one-dimensional BCS-BEC crossover of a spin-imbalanced Fermi gas. The crossover is described by the Bose-Fermi resonance model in a real space representation. Our main interest is in the behavior of the pair correl ations, which, in the BCS limit, are of the Fulde-Ferrell-Larkin-Ovchinnikov type, while in the BEC limit, a superfluid of diatomic molecules forms that exhibits quasi-condensation at zero momentum. We use the density matrix renormalization group method to compute the phase diagram as a function of the detuning of the molecular level and the polarization. As a main result, we show that FFLO-like correlations disappear well below full polarization close to the resonance. The critical polarization depends on both the detuning and the filling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا