ﻻ يوجد ملخص باللغة العربية
Spoken language understanding (SLU) systems can be trained on two types of labelled data: aligned or unaligned. Unaligned data do not require word by word annotation and is easier to be obtained. In the paper, we focus on spoken language understanding from unaligned data whose annotation is a set of act-slot-value triples. Previous works usually focus on improve slot-value pair prediction and estimate dialogue act types separately, which ignores the hierarchical structure of the act-slot-value triples. Here, we propose a novel hierarchical decoding model which dynamically parses act, slot and value in a structured way and employs pointer network to handle out-of-vocabulary (OOV) values. Experiments on DSTC2 dataset, a benchmark unaligned dataset, show that the proposed model not only outperforms previous state-of-the-art model, but also can be generalized effectively and efficiently to unseen act-slot type pairs and OOV values.
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. I
Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference latency due to the impatience of humans. Non-autoregressive SLU models clearly increase the inference speed but suffer uncoordinat
End-to-end architectures have been recently proposed for spoken language understanding (SLU) and semantic parsing. Based on a large amount of data, those models learn jointly acoustic and linguistic-sequential features. Such architectures give very g
Data scarcity is one of the main obstacles of domain adaptation in spoken language understanding (SLU) due to the high cost of creating manually tagged SLU datasets. Recent works in neural text generative models, particularly latent variable models s
Lack of training data presents a grand challenge to scaling out spoken language understanding (SLU) to low-resource languages. Although various data augmentation approaches have been proposed to synthesize training data in low-resource target languag