ﻻ يوجد ملخص باللغة العربية
We propose a random matrix theory for QCD in three dimensions with a Chern-Simons term at level $k$ which spontaneously breaks the flavor symmetry according to U($2N_{rm f}$) $to $ U($N_{rm f}+k$)$times$U($N_{rm f}-k$). This random matrix model is obtained by adding a complex part to the action for the $k=0$ random matrix model. We derive the pattern of spontaneous symmetry breaking from the analytical solution of the model. Additionally, we obtain explicit analytical results for the spectral density and the spectral correlation functions for the Dirac operator at finite matrix dimension, that become complex. In the microscopic domain where the matrix size tends to infinity, they are expected to be universal, and give an exact analytical prediction to the spectral properties of the Dirac operator in the presence of a Chern-Simons term. Here, we calculate the microscopic spectral density. It shows exponentially large (complex) oscillations which cancel the phase of the $k=0$ theory.
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamical
In this work, we study the behavior of the nonabelian five-dimensional Chern-Simons term at finite temperature regime in order to verify the possible nonanalyticity. We employ two methods, a perturbative and a non-perturbative one. No scheme of regul
We extend our recent work on the quasilocal formulation of conserved charges to a theory of gravity containing a gravitational Chern-Simons term. As an application of our formulation, we compute the off-shell potential and quasilocal conserved charge
Introducing a chemical potential in the functional method, we construct the effective action of QED$_3$ with a Chern-Simons term. We examine a possibility that charge condensation $langlepsi^daggerpsi rangle$ remains nonzero at the limit of the zero
By constructing the configuration of D3-branes with D(-1)-branes as D-instantons, we study the three-dimensional Yang-Mills Chern-Simons theory in holography. Due to the presence of the D-instantons, the D7-branes with discrepant embedding functions