ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional Yang-Mills Chern-Simons theory from D3-brane background with D-instantons

109   0   0.0 ( 0 )
 نشر من قبل Si-Wen Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By constructing the configuration of D3-branes with D(-1)-branes as D-instantons, we study the three-dimensional Yang-Mills Chern-Simons theory in holography. Due to the presence of the D-instantons, the D7-branes with discrepant embedding functions are able to be introduced in order to include the fundamental fermions (as flavors) and the Chern-Simons term (at very low energy) in the dual theory. The vacuum structure at zero temperature is studied in the soliton background and it illustrates the topological phase transition in the presence of instantons. Moreover, since the confinement/deconfinement phase transition could be holographically identified as the Hawking-Page transition in the bulk, we accordingly calculate the critical temperature of the deconfinement phase transition by collecting the bulk onshell action as the thermodynamical free energy. On the other hand, we evaluate the difference of the entanglement entropy in slab configuration by using the RT formula since the confinement may also be characterized by the entanglement entropy. Altogether we find the behavior of the critical temperature is in qualitative agreement with the behavior of the critical length determined by the entanglement entropy which implies the entanglement entropy could indeed be a character of the confinement in our setup and the D3-D(-1) system would be a remarkable approach to study the three-dimensional gauge theory.

قيم البحث

اقرأ أيضاً

99 - Martin OLoughlin 1996
In the vicinity of points in Calabi-Yau moduli space where there are degenerating three-cycles the low energy effective action of type IIA string theory will contain significant contributions arising from membrane instantons that wrap around these th ree-cycles. We show that the world-volume description of these instantons is Chern-Simons theory.
We analyze the Chern-Simons-like term generation in the CPT-odd Lorentz-violating Yang-Mills theory interacting with fermions. Moreover, we study the anomalies of this model as well as its quantum stability. The whole analysis is performed within the algebraic renormalization theory, which is independent of the renormalization scheme. In addition, all results are valid to all orders in perturbation theory. We find that the Chern-Simons-like term is not generated by radiative corrections, just like its Abelian version. Additionally, the model is also free of gauge anomalies and quantum stable.
98 - Marco Frasca 2016
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi th preceding findings in literature but here we derive it analytically from the theory without further assumptions. The string tension is in strict agreement with lattice results and the well-known theoretical result by Karabali-Kim-Nair analysis. Classical solutions depend on a dimensionless numerical factor arising from integration. This factor enters into the determination of the spectrum and has been arbitrarily introduced in some theoretical models. We derive it directly from the solutions of the theory and is now fully justified. The agreement obtained with the lattice results for the ground state of the theory is well below 1% at any value of the degree of the group.
We study RG flow solutions in (1,0) six dimensional supergravity coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a semisimple group $G$. We turn on $G$ instanton gauge fields, with instanton number $N$, in the conformal ly flat part of the 6D metric. The solution interpolates between two (4,0) supersymmetric $AdS_3times S^3$ backgrounds with two different values of $AdS_3$ and $S^3$ radii and describes an RG flow in the dual 2D SCFT. For the single instanton case and $G=SU(2)$, there exist a consistent reduction ansatz to three dimensions, and the solution in this case can be interpreted as an uplifted 3D solution. Correspondingly, we present the solution in the framework of N=4 $(SU(2)ltimes mathbf{R}^3)^2$ three dimensional gauged supergravity. The flows studied here are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension two in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in type I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.
We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Ca llias-type index theorem, the moduli matrix approach and a D-brane setup in Type IIB string theory. We prove that the index theorem gives the number of zeromodes or moduli of the non-Abelian vortices, extend the moduli matrix approach to the Yang-Mills-Chern-Simons-Higgs theory and finally derive the effective Lagrangian of Collie and Tong using string theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا