ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic Characterization of Essential Matrices and Their Averaging in Multiview Settings

118   0   0.0 ( 0 )
 نشر من قبل Yoni Kasten
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Essential matrix averaging, i.e., the task of recovering camera locations and orientations in calibrated, multiview settings, is a first step in global approaches to Euclidean structure from motion. A common approach to essential matrix averaging is to separately solve for camera orientations and subsequently for camera positions. This paper presents a novel approach that solves simultaneously for both camera orientations and positions. We offer a complete characterization of the algebraic conditions that enable a unique Euclidean reconstruction of $n$ cameras from a collection of $(^n_2)$ essential matrices. We next use these conditions to formulate essential matrix averaging as a constrained optimization problem, allowing us to recover a consistent set of essential matrices given a (possibly partial) set of measured essential matrices computed independently for pairs of images. We finally use the recovered essential matrices to determine the global positions and orientations of the $n$ cameras. We test our method on common SfM datasets, demonstrating high accuracy while maintaining efficiency and robustness, compared to existing methods.



قيم البحث

اقرأ أيضاً

Global methods to Structure from Motion have gained popularity in recent years. A significant drawback of global methods is their sensitivity to collinear camera settings. In this paper, we introduce an analysis and algorithms for averaging bifocal t ensors (essential or fundamental matrices) when either subsets or all of the camera centers are collinear. We provide a complete spectral characterization of bifocal tensors in collinear scenarios and further propose two averaging algorithms. The first algorithm uses rank constrained minimization to recover camera matrices in fully collinear settings. The second algorithm enriches the set of possibly mixed collinear and non-collinear cameras with additional, virtual cameras, which are placed in general position, enabling the application of existing averaging methods to the enriched set of bifocal tensors. Our algorithms are shown to achieve state of the art results on various benchmarks that include autonomous car datasets and unordered image collections in both calibrated and unclibrated settings.
We prove that for every Scott set $S$ there are $S$-saturated real closed fields and models of Presburger arithmetic.
Euclidean distance matrices (EDM) are matrices of squared distances between points. The definition is deceivingly simple: thanks to their many useful properties they have found applications in psychometrics, crystallography, machine learning, wireles s sensor networks, acoustics, and more. Despite the usefulness of EDMs, they seem to be insufficiently known in the signal processing community. Our goal is to rectify this mishap in a concise tutorial. We review the fundamental properties of EDMs, such as rank or (non)definiteness. We show how various EDM properties can be used to design algorithms for completing and denoising distance data. Along the way, we demonstrate applications to microphone position calibration, ultrasound tomography, room reconstruction from echoes and phase retrieval. By spelling out the essential algorithms, we hope to fast-track the readers in applying EDMs to their own problems. Matlab code for all the described algorithms, and to generate the figures in the paper, is available online. Finally, we suggest directions for further research.
Humans view the world through many sensory channels, e.g., the long-wavelength light channel, viewed by the left eye, or the high-frequency vibrations channel, heard by the right ear. Each view is noisy and incomplete, but important factors, such as physics, geometry, and semantics, tend to be shared between all views (e.g., a dog can be seen, heard, and felt). We investigate the classic hypothesis that a powerful representation is one that models view-invariant factors. We study this hypothesis under the framework of multiview contrastive learning, where we learn a representation that aims to maximize mutual information between different views of the same scene but is otherwise compact. Our approach scales to any number of views, and is view-agnostic. We analyze key properties of the approach that make it work, finding that the contrastive loss outperforms a popular alternative based on cross-view prediction, and that the more views we learn from, the better the resulting representation captures underlying scene semantics. Our approach achieves state-of-the-art results on image and video unsupervised learning benchmarks. Code is released at: http://github.com/HobbitLong/CMC/.
233 - J. Scott Carter 2008
For an arbitrary identity L=R between compositions of maps L and R on tensors of vector spaces V, a general construction of a 2-cocycle condition is given. These 2-cocycles correspond to those obtained in deformation theories of algebras. The constru ction is applied to a canceling pairings and copairings, with explicit examples with calculations. Relations to the Kauffman bracket and knot invariants are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا