ﻻ يوجد ملخص باللغة العربية
For an arbitrary identity L=R between compositions of maps L and R on tensors of vector spaces V, a general construction of a 2-cocycle condition is given. These 2-cocycles correspond to those obtained in deformation theories of algebras. The construction is applied to a canceling pairings and copairings, with explicit examples with calculations. Relations to the Kauffman bracket and knot invariants are discussed.
We show that all finite dimensional pointed Hopf algebras with the same diagram in the classification scheme of Andruskiewitsch and Schneider are cocycle deformations of each other. This is done by giving first a suitable characterization of such Hop
We bring cocycle enhancement theory to the case of psyquandles. Analogously to our previous work on virtual biquandle cocycle enhancements, we define enhancements of the psyquandle counting invariant via pairs of a biquandle 2-cocycle and a new funct
A heap is a set with a certain ternary operation that is self-distributive (TSD) and exemplified by a group with the operation $(x,y,z)mapsto xy^{-1}z$. We introduce and investigate framed link invariants using heaps. In analogy with the knot group,
This paper is a brief overview of some of our recent results in collaboration with other authors. The cocycle invariants of classical knots and knotted surfaces are summarized, and some applications are presented.
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Gra~na. We specialize that theory to the case when there is a group action on the coefficients. First, quandle