ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical algorithms for Forrelation

55   0   0.0 ( 0 )
 نشر من قبل Sergey Bravyi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the forrelation problem: given a pair of $n$-bit boolean functions $f$ and $g$, estimate the correlation between $f$ and the Fourier transform of $g$. This problem is known to provide the largest possible quantum speedup in terms of its query complexity and achieves the landmark oracle separation between the complexity class BQP and the Polynomial Hierarchy. Our first result is a classical algorithm for the forrelation problem which has runtime $O(n2^{n/2})$. This is a nearly quadratic improvement over the best previously known algorithm. Secondly, we introduce a graph-based forrelation problem where $n$ binary variables live at vertices of some fixed graph and the functions $f,g$ are products of terms dscribing interactions between nearest-neighbor variables. We show that the graph-based forrelation problem can be solved on a classical computer in time $O(n^2)$ for any bipartite graph, any planar graph, or, more generally, any graph which can be partitioned into two subgraphs of constant treewidth. The graph-based forrelation is simply related to the variational energy achieved by the Quantum Approximate Optimization Algorithm (QAOA) with two entangling layers and Ising-type cost functions. By exploiting the connection between QAOA and the graph-based forrelation we were able to simulate the recently proposed Recurisve QAOA with two entangling layers and 225 qubits on a laptop computer.

قيم البحث

اقرأ أيضاً

It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver . It has been an open question to determine whether entanglement can ever increase the zero-error communication rates achievable in the limit of many channel uses. In this paper we show, by explicit examples, that entanglement can indeed increase asymptotic zero-error capacity, even to the extent that it is equal to the normal capacity of the channel. Interestingly, our examples are based on the exceptional simple root systems E7 and E8.
We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square latt ice, and (iv) the Z_2 lattice gauge theory on a three-dimensional square lattice. Moreover, we prove that these problems are BQP-complete, that is, that estimating these partition functions is as hard as simulating arbitrary quantum computation. The results are proven for a complex parameter regime of the models. The proofs are based on a mapping relating partition functions to quantum circuits introduced in [Van den Nest et al., Phys. Rev. A 80, 052334 (2009)] and extended here.
69 - Aleksandrs Belovs 2019
We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study thei r mutual relationships. Additionally, we prove that quantum query complexity of distinguishing two probability distributions is given by their inverse Hellinger distance, which gives a quadratic improvement over classical query complexity for any pair of distributions. The results are obtained by using the adversary method for state-generating input oracles and for distinguishing probability distributions on input strings.
We consider the task of estimating the expectation value of an $n$-qubit tensor product observable $O_1otimes O_2otimes cdots otimes O_n$ in the output state of a shallow quantum circuit. This task is a cornerstone of variational quantum algorithms f or optimization, machine learning, and the simulation of quantum many-body systems. Here we study its computational complexity for constant-depth quantum circuits and three types of single-qubit observables $O_j$ which are (a) close to the identity, (b) positive semidefinite, (c) arbitrary. It is shown that the mean value problem admits a classical approximation algorithm with runtime scaling as $mathrm{poly}(n)$ and $2^{tilde{O}(sqrt{n})}$ in cases (a,b) respectively. In case (c) we give a linear-time algorithm for geometrically local circuits on a two-dimensional grid. The mean value is approximated with a small relative error in case (a), while in cases (b,c) we satisfy a less demanding additive error bound. The algorithms are based on (respectively) Barvinoks polynomial interpolation method, a polynomial approximation for the OR function arising from quantum query complexity, and a Monte Carlo method combined with Matrix Product State techniques. We also prove a technical lemma characterizing a zero-free region for certain polynomials associated with a quantum circuit, which may be of independent interest.
Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing of the stationary Gibbs states and the rapid decay of the relative entropy on finite-size blocks. Our result leads to the first examples of the positivity of the modified logarithmic Sobolev inequality for quantum lattice spin systems independently of the system size. Moreover, we show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosmans complete analyticity of the free-energy at equilibrium. The latter typically holds above a critical temperature Tc. Our results have wide-ranging applications in quantum information. As an illustration, we discuss four of them: first, using techniques of quantum optimal transport, we show that a quantum annealer subject to a finite range classical noise will output an energy close to that of the fixed point after constant annealing time. Second, we prove Gaussian concentration inequalities for Lipschitz observables and show that the eigenstate thermalization hypothesis holds for certain high-temperture Gibbs states. Third, we prove a finite blocklength refinement of the quantum Stein lemma for the task of asymmetric discrimination of two Gibbs states of commuting Hamiltonians satisfying our conditions. Fourth, in the same setting, our results imply the existence of a local quantum circuit of logarithmic depth to prepare Gibbs states of a class of commuting Hamiltonians.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا