ﻻ يوجد ملخص باللغة العربية
We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems (planetary magnetospheres, magnetosphere-ionosphere and magnetosphere-satellite coupling, and star-planet interactions), and the physical information that can be drawn from their detection. The latter scenario is especially favorable to the production of radio emission above 70,MHz. We summarize the results of past and recent radio searches, and then discuss FAST characteristics and observation strategy, including synergies. We emphasize the importance of polarization measurements and a high duty-cycle for the very weak targets that radio-exoplanets prove to be.
Vortex Fiber Nulling (VFN) is an interferometric method for suppressing starlight to detect and spectroscopically characterize exoplanets. It relies on a vortex phase mask and single-mode fiber to reject starlight while simultaneously coupling up to
LOUPE, the Lunar Observatory for Unresolved Polarimetry of the Earth, is a small, robust spectro-polarimeter with a mission to observe the Earth as an exoplanet. Detecting Earth-like planets in stellar habitable zones is one of the key challenges of
Exoplanets, short for `extra solar planets, are planets outside our solar system. They are objects with masses less than around 15 Jupiter-masses that orbit stars other than the Sun. They are small enough so they can not burn deuterium in their cores
In the preparation for ESAs Euclid mission and the large amount of data it will produce, we train deep convolutional neural networks on Euclid simulations classify solar system objects from other astronomical sources. Using transfer learning we are a
One of the primary goals of exoplanet science is to find and characterize habitable planets, and direct imaging will play a key role in this effort. Though imaging a true Earth analog is likely out of reach from the ground, the coming generation of g