ترغب بنشر مسار تعليمي؟ اضغط هنا

LOUPE: Observing Earth from the Moon to prepare for detecting life on Earth-like exoplanets

381   0   0.0 ( 0 )
 نشر من قبل Dora Klindzic
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dora Klindv{z}ic




اسأل ChatGPT حول البحث

LOUPE, the Lunar Observatory for Unresolved Polarimetry of the Earth, is a small, robust spectro-polarimeter with a mission to observe the Earth as an exoplanet. Detecting Earth-like planets in stellar habitable zones is one of the key challenges of modern exoplanetary science. Characterising such planets and searching for traces of life requires the direct detection of their signals. LOUPE provides unique spectral flux and polarisation data of sunlight reflected by the Earth, the only planet known to harbor life. This data will be used to test numerical codes to predict signals of Earth-like exoplanets, to test algorithms that retrieve planet properties, and to fine-tune the design and observational strategies of future space observatories. From the Moon, LOUPE will continuously see the entire Earth, enabling it to monitor the signal changes due to the planets daily rotation, weather patterns, and seasons, across all phase angles. Here, we present both the science case and the technology behind LOUPEs instrumental and mission design.

قيم البحث

اقرأ أيضاً

We present the design of a point-and-shoot non-imaging full-Stokes spectropolarimeter dedicated to detecting life on Earth from an orbiting platform like the ISS. We specifically aim to map circular polarization in the spectral features of chlorophyl l and other biopigments for our planet as a whole. These non-zero circular polarization signatures are caused by homochirality of the molecular and supramolecular configurations of organic matter, and are considered the most unambiguous biomarker. To achieve a fully solid-state snapshot design, we implement a novel spatial modulation that completely separates the circular and linear polarization channels. The polarization modulator consists of a patterned liquid-crystal quarter-wave plate inside the spectrograph slit, which also constitutes the first optical element of the instrument. This configuration eliminates cross-talk between linear and circular polarization, which is crucial because linear polarization signals are generally much stronger than the circular polarization signals. This leads to a quite unorthodox optical concept for the spectrograph, in which the object and the pupil are switched. We discuss the general design requirements and trade-offs of LSDpol (Life Signature Detection polarimeter), a prototype instrument that is currently under development.
Because of the recent technological advances, the key technologies needed for precision space optical astrometry are now in hand. The Microarcsecond Astrometry Probe (MAP) mission concept is designed to find 1 Earth mass planets at 1AU orbit (scaled to solar luminosity) around the nearest ~90 FGK stars. The MAP payload includes i) a single three-mirror anastigmatic telescope with a 1-m primary mirror and metrology subsystems, and ii) a camera. The camera focal plane consists of 42 detectors, providing a Nyquist sampled FOV of 0.4-deg. Its metrology subsystems ensure that MAP can achieve the 0.8 uas astrometric precision in 1 hr, which is required to detect Earth-like exoplanets in our stellar neighborhood. MAP mission could provide ~10 specific targets for a much larger coronagraphic mission that would measure its spectra. We argue for the development of the space astrometric missions capable of finding Earth-2.0. Given the current technology readiness such missions relying on precision astrometry could be flown in the next decade, perhaps in collaboration with other national space agencies.
75 - T. Karalidi , D.M. Stam , F. Snik 2012
The detections of small, rocky exoplanets have surged in recent years and will likely continue to do so. To know whether a rocky exoplanet is habitable, we have to characterise its atmosphere and surface. A promising characterisation method for rocky exoplanets is direct detection using spectropolarimetry. This method will be based on single pixel signals, because spatially resolving exoplanets is impossible with current and near-future instruments. Well-tested retrieval algorithms are essential to interpret these single pixel signals in terms of atmospheric composition, cloud and surface coverage. Observations of Earth itself provide the obvious benchmark data for testing such algorithms. The observations should provide signals that are integrated over the Earths disk, that capture day and night variations, and all phase angles. The Moon is a unique platform from where the Earth can be observed as an exoplanet, undisturbed, all of the time. Here, we present LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth, a small and robust spectropolarimeter to observe our Earth as an exoplanet.
We present a model for lightning shock induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ~ 1e-3 at 40 km and NO2 ~ 1e-4 below 40 km, with O3 reduced to trace quantities (<< 1e-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2, and predict significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ~3.4 {mu}m and ~6.2 {mu}m. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with JWST. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.
Direct detection and characterization of Earth-like planets around Sun-like stars is a core task for evaluating the prevalence of habitability and life in the Universe. Here, we discuss a promising option for achieving this goal, which is based on pl acing an occulter in orbit and having it project its shadow onto the E- ELT at the surface of Earth, thus providing a sufficient contrast for imaging and taking spectra of Earth-like planets in the habitable zones of Sun-like stars. Doing so at a sensible fuel budget will require tailored orbits, an occulter with a high area-to-mass ratio, and appropriate instrumentation at the E-ELT. In this White Paper, submitted in response to the ESA Voyage 2050 Call, we outline the fundamental aspects of the concept, and the most important technical developments that will be required to develop a full mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا