ﻻ يوجد ملخص باللغة العربية
Vortex Fiber Nulling (VFN) is an interferometric method for suppressing starlight to detect and spectroscopically characterize exoplanets. It relies on a vortex phase mask and single-mode fiber to reject starlight while simultaneously coupling up to 20% of the planet light at separations of $lesssim1lambda/D$, thereby enabling spectroscopic characterization of a large population of RV and transit-detected planets, among others, that are inaccessible to conventional coronagraphs. VFN has been demonstrated in the lab at visible wavelengths and here we present the latest results of these experiments. This includes polychromatic nulls of $5times10^{-4}$ in 10% bandwidth light centered around 790 nm. An upgraded testbed has been designed and is being built in the lab now; we also present a status update on that work here. Finally, we present preliminary K-band (2 $mu$m) fiber nulling results with the infrared mask that will be used on-sky as part of a VFN mode for the Keck Planet Imager and Characterizer Instrument in 2021.
Understanding the atmospheres of exoplanets is a milestone to decipher their formation history and potential habitability. High-contrast imaging and spectroscopy of exoplanets is the major pathway towards the goal. Directly imaging of an exoplanet re
Vortex fiber nulling is a method for spectroscopically characterizing exoplanets at small angular separations, $lesssimlambda/D$, from their host star. The starlight is suppressed by creating an optical vortex in the system point spread function, whi
The Keck Planet Imager and Characterizer (KPIC) is an upgrade to the Keck II adaptive optics system that includes an active fiber injection unit (FIU) for efficiently routing light from exoplanets to NIRSPEC, a high-resolution spectrograph. Towards t
We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems (planetary magnetospheres, magnetosphere-ionosphere and magnetosphere-satellite coupling, and star-planet interactions), and the ph
Proxima b is our nearest potentially rocky exoplanet and represents a formidable opportunity for exoplanet science and possibly astrobiology. With an angular separation of only 35~mas (or 0.05~AU) from its host star, Proxima b is however hardly obser