ﻻ يوجد ملخص باللغة العربية
Strong downstream magnetic fields of order of $sim 1$G, with large correlation lengths, are believed to cause the large synchrotron emission at the afterglow phase of gamma ray bursts (GRBs). Despite of the recent theoretical efforts, models have failed to fully explain the amplification of the magnetic field, particularly in a matter dominated scenario. We revisit the problem by considering the synchrotron emission to occur at the expanding shock front of a weakly magnetized relativistic jet over a magnetized surrounding medium. Analytical estimates and a number of high resolution 2D relativistic magneto-hydrodynamical (RMHD) simulations are provided. Jet opening angles of $theta = 0^{circ} - 20^{circ}$, and ambient to jet density ratios of $10^{-4} - 10^2$ were considered. We found that most of the amplification is due to compression of the ambient magnetic field at the contact discontinuity between the reverse and forward shocks at the jet head, with substantial pile-up of the magnetic field lines as the jet propagates sweeping the ambient field lines. The pile-up is maximum for $theta rightarrow 0$, decreasing with $theta$, but larger than in the spherical blast problem. Values obtained for certain models are able to explain the observed intensities. The maximum correlation lengths found for such strong fields is of $l_{rm corr} leq 10^{14}$ cm, $2 - 6$ orders of magnitude larger than the found in previous works.
We present a formalism of the dynamics of internal shocks in relativistic jets where the source has a time-dependent injection velocity and mass-loss rate. The variation of the injection velocity produces a two-shock wave structure, the working surfa
We model the multi-wavelength emission in the southern hotspot of the radio quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is inter
Synchrotron radio emission from non-relativistic jets powered by massive protostars has been reported, indicating the presence of relativistic electrons and magnetic fields of strength ~0.3-5 mG. We study diffusive shock acceleration and magnetic fie
About 15% of Gamma Ray Bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission
Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It