ترغب بنشر مسار تعليمي؟ اضغط هنا

Induced superconducting pairing in integer quantum Hall edge states

154   0   0.0 ( 0 )
 نشر من قبل Javad Shabani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Indium Arsenide (InAs) near surface quantum wells (QWs) are ideal for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the ones in the superconductor. In this work we present results for InAs QWs in the quantum Hall regime placed in proximity of superconducting NbTiN. We observe a negative downstream resistance with a corresponding reduction of Hall (upstream) resistance. We analyze the experimental data using the Landauer-B{u}ttiker formalism, generalized to allow for Andreev reflection processes. Our analysis is consistent with a lower-bound for the averaged Andreev conversion of about 15%. We attribute the high efficiency of Andreev conversion in our devices to the large transparency of the InAs/NbTiN interface and the consequent strong hybridization of the QH edge modes with the states in the superconductor.



قيم البحث

اقرأ أيضاً

Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In the presence of a smooth confining potential it was hitherto believed that this picture may only be partially modified by the appearance of additional counterpropagating integer-charge modes. Here, we demonstrate the breakdown of this paradigm: The system favors the formation of edge modes supporting fractional excitations. This accounts for previous observations, and leads to additional predictions amenable to experimental tests.
A highly non-thermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance downstream from the contact has been observed in recent experiments [Phys. Rev. Lett. 105, 056803 (2010)]. Here we present an exact treatment of a minimal model for the system at filling factor u=2, with results that account well for the observations.
We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evol ution from an initial non-equilibrium state in a translationally invariant system. We show that electron interactions bring the system into a steady state at long times. Strikingly, this state is not a thermal one: its properties depend on the full functional form of the initial electron distribution, and not simply on the initial energy density. Further, we demonstrate that measurements of the tunneling density of states at long times can yield either an over-estimate or an under-estimate of the energy density, depending on details of the analysis, and discuss this finding in connection with an apparent energy loss observed experimentally. More specifically, we treat several separate cases: for filling factor u=1 we discuss relaxation due to finite-range or Coulomb interactions between electrons in the same channel, and for filling factor u=2 we examine relaxation due to contact interactions between electrons in different channels. In both instances we calculate analytically the long-time asymptotics of the single-particle correlation function. These results are supported by an exact solution at arbitrary time for the problem of relaxation at u=2 from an initial state in which the two channels have electron distributions that are both thermal but with unequal temperatures, for which we also examine the tunneling density of states.
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r egime. The pairing takes place within an interfering edge channel circulating in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, $2<{ u} _B<5$. The main observations are: (a) High visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity ${Delta}{phi}={varphi}_0/2=h/2e$ (instead of the ubiquitous $h/e$), with $e$ the electron charge and $h$ the Planck constant; (b) An interfering quasiparticle charge $e ^* {sim} 2e$ - revealed by quantum shot noise measurements; and (c) Full dephasing of the $h/2e$ periodicity by induced dephasing of the adjacent edge channel (while keeping the interfering edge channel intact) : a clear realization of inter-channel entanglement. While this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to e-e attraction within a single edge channel is not clear.
An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively couple d to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time $tau_phi(T)$ of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا