ﻻ يوجد ملخص باللغة العربية
Indium Arsenide (InAs) near surface quantum wells (QWs) are ideal for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the ones in the superconductor. In this work we present results for InAs QWs in the quantum Hall regime placed in proximity of superconducting NbTiN. We observe a negative downstream resistance with a corresponding reduction of Hall (upstream) resistance. We analyze the experimental data using the Landauer-B{u}ttiker formalism, generalized to allow for Andreev reflection processes. Our analysis is consistent with a lower-bound for the averaged Andreev conversion of about 15%. We attribute the high efficiency of Andreev conversion in our devices to the large transparency of the InAs/NbTiN interface and the consequent strong hybridization of the QH edge modes with the states in the superconductor.
Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In
A highly non-thermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance
We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evol
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r
An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively couple