ﻻ يوجد ملخص باللغة العربية
The efficient computation of shortest paths in complex networks is essential to face new challenges related to critical infrastructures such as a near real-time monitoring and control and the management of big size systems. In particular, using information on the minimum paths in water distribution networks (WDNs) allows to track the diffusion of contaminants and to quantify the resilience and criticality of the system. This is, ultimately, approached by considering dynamically changing path-weights that depend on the flow or on other information available at run-time. These analyses tipically include all the WDN assets but reducing the high degree of physical details with a minimum lost of key information for their performance assessment. This paper proposes a strategy to compute minimum paths that is based on a dimensionality-reduction process. Specifically, the network is partitioned into communities and suitably modified to obtain a reduced complexity representation (e.g., in terms of number of nodes and links). The paper shows how this novel, reduced representation is equivalent to the traditional network on computing the shortest paths. The proposed approach is validated considering two utility networks as case studies. The results show that the proposed method provides the exact solution for the shortest path with a computational-time reduction consistently over 50% and up to 90% for some cases. Furthermore, the application of the proposal on WDNs partitioning shows both hydraulic and economic advantages thanks to their monitoring and controlling at near real-time.
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi
The apparent ease with which animals move requires the coordination of their many degrees of freedom to manage and properly utilize environmental interactions. Identifying effective strategies for locomotion has proven challenging, often requiring de
This letter propose a new model for characterizing traffic dynamics in scale-free networks. With a replotted road map of cities with roads mapped to vertices and intersections to edges, and introducing the road capacity L and its handling ability at
Mitigating traffic congestion on urban roads, with paramount importance in urban development and reduction of energy consumption and air pollution, depends on our ability to foresee road usage and traffic conditions pertaining to the collective behav
In this paper, urban traffic is modeled using dual graph representation of urban transportation network where roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the navigation of vehicles on the network