ﻻ يوجد ملخص باللغة العربية
Mitigating traffic congestion on urban roads, with paramount importance in urban development and reduction of energy consumption and air pollution, depends on our ability to foresee road usage and traffic conditions pertaining to the collective behavior of drivers, raising a significant question: to what degree is road traffic predictable in urban areas? Here we rely on the precise records of daily vehicle mobility based on GPS positioning device installed in taxis to uncover the potential daily predictability of urban traffic patterns. Using the mapping from the degree of congestion on roads into a time series of symbols and measuring its entropy, we find a relatively high daily predictability of traffic conditions despite the absence of any a priori knowledge of drivers origins and destinations and quite different travel patterns between weekdays and weekends. Moreover, we find a counterintuitive dependence of the predictability on travel speed: the road segment associated with intermediate average travel speed is most difficult to be predicted. We also explore the possibility of recovering the traffic condition of an inaccessible segment from its adjacent segments with respect to limited observability. The highly predictable traffic patterns in spite of the heterogeneity of drivers behaviors and the variability of their origins and destinations enables development of accurate predictive models for eventually devising practical strategies to mitigate urban road congestion.
Understanding cities is central to addressing major global challenges from climate and health to economic resilience. Although increasingly perceived as fundamental socio-economic units, the detailed fabric of urban economic activities is only now ac
In this paper, urban traffic is modeled using dual graph representation of urban transportation network where roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the navigation of vehicles on the network
This letter propose a new model for characterizing traffic dynamics in scale-free networks. With a replotted road map of cities with roads mapped to vertices and intersections to edges, and introducing the road capacity L and its handling ability at
A traffic incident analysis method based on extended spectral envelope (ESE) method is presented to detect the key incident time. Sensitivity analysis of parameters (the length of time window, the length of sliding window and the study period) are di
Moderate length of time window can get the best accurate result in detecting the key incident time using extended spectral envelope. This paper presents a method to calculate the moderate length of time window. Two factors are mainly considered: (1)