ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium

238   0   0.0 ( 0 )
 نشر من قبل Kyle Martin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extra-laboratory atomic clocks are necessary for a wide array of applications (e.g. satellite-based navigation and communication). Building upon existing vapor cell and laser technologies, we describe an optical atomic clock, designed around a simple and manufacturable architecture, that utilizes the 778~nm two-photon transition in rubidium and yields fractional frequency instabilities of $3times10^{-13}/sqrt{tau (s)}$ for $tau$ from 1~s to 10000~s. We present a complete stability budget for this system and explore the required conditions under which a fractional frequency instability of $1times 10^{-15}$ can be maintained on long timescales. We provide precise characterization of the leading sensitivities to external processes including magnetic fields and fluctuations of the vapor cell temperature and 778~nm laser power. The system is constructed primarily from commercially-available components, an attractive feature from the standpoint of commercialization and deployment of optical frequency standards.



قيم البحث

اقرأ أيضاً

215 - Amar C. Vutha 2015
A two-photon transition in laser-cooled and trapped calcium atoms is proposed as the atomic reference in an optical frequency standard. An efficient scheme for interrogation of the frequency standard is described, and the sensitivity of the clock tra nsition to systematic effects is estimated. Frequency standards based on this transition could lead to compact and portable devices that are capable of rapidly averaging down to $< 10^{-16}$.
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the lon g natural lifetime and from the 4f136s2 configuration of the upper state. The electric quadrupole moment of the 2F7/2 state is measured as -0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe light induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.
We present a compact and transportable inertial sensor for precision sensing of rotations and accelerations. The sensor consists of a dual Mach-Zehnder-type atom interferometer operated with laser-cooled $^{87}$Rb. Raman processes are employed to coh erently manipulate the matter waves. We describe and characterize the experimental apparatus. A method for passing from a compact geometry to an extended interferometer with three independent atom-light interaction zones is proposed and investigated. The extended geometry will enhance the sensitivity by more than two orders of magnitude which is necessary to achieve sensitivities better than $10^{-8} $rad/s/$sqrt{rm Hz}$.
We investigate systematic errors associated with a common modulation technique used for phase sensitive detection of a coherent population trapping (CPT) resonance. In particular, we show that modification of the CPT resonance lineshape due to the pr esence of off-resonant fields leads to frequency shifts which may limit the stability of CPT-based atomic clocks. We also demonstrate that an alternative demodulation technique greatly reduces these effects.
We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent exper imental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا