ﻻ يوجد ملخص باللغة العربية
We have investigated the critical phenomenon associated with the magnetic phase transition in the half-metallic full-Heusler Co$_2$TiGe. The compound undergoes a continuous ferromagnetic to paramagnetic phase transition at the Curie temperature $T_{C}$=371.5 K. The analysis of magnetization isotherms in the vicinity of $T_{c}$, following modified Arrott plot method, Kouvel-Fisher technique, and critical isotherm plot, yields the asymptotic critical exponents $beta$=0.495, $gamma$=1.324, and $delta$=3.67. The self-consistency and reliability of the obtained exponents are further verified by the Widom scaling relation and scaling equation of states. The mean-field-like value of the critical exponent $beta$ suggests long-range nature of the exchange interactions, whereas the values of the critical exponents $gamma$ and $delta$, imply sizeable critical spin fluctuations. The half-metallic itinerant character of Co$_{2}$TiGe in the presence of magnetic inhomogeneity may result in such a strong deviation from the three-dimensional Heisenberg values ($beta$=0.369, $gamma$=1.38 and $delta$=4.8) of the critical exponents towards the mean field values ($beta$=0.5, $gamma$=1 and $delta$=3). The results suggest complex nature of exchange couplings that stabilize the long-range ferromagnetic ordering in the system and are consistent with the earlier theoretical studies on the exchange mechanism in Co$_2$TiGe.
Though Weyl fermions have recently been observed in several materials with broken inversion symmetry, there are very few examples of such systems with broken time reversal symmetry. Various Co$_{2}$-based half-metallic ferromagnetic Heusler compounds
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist
The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-
Controlling quantum critical phenomena in strongly correlated electron systems, which emerge in the neighborhood of a quantum phase transition, is a major challenge in modern condensed matter physics. Quantum critical phenomena are generated from the
Two-dimensional (2D) intrinsic half-metallic materials are of great interest to explore the exciting physics and applications of nanoscale spintronic devices, but no such materials have been experimentally realized. Using first-principles calculation