ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for hexagonal analogues of the half-metallic half-Heusler XYZ compounds

166   0   0.0 ( 0 )
 نشر من قبل Ram Seshadri
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-electron compounds such as LiAlSi (formulated Li$^+$[AlSi]$^-$) or semiconducting 18-electron compounds such as TiCoSb (formulated Ti$^{4+}$[CoSb]$^{4-}$). The basis for this is that [AlSi]$^-$ (with the same electron count as Si$_2$) and [CoSb]$^{4-}$ (the same electron count as GaSb), are both structurally and electronically, zinc-blende semiconductors. The electronic structure of half-metallic ferromagnets in this structure type can then be described as semiconductors with stuffing magnetic ions which have a local moment: For example, 22 electron MnNiSb can be written Mn$^{3+}$[NiSb]$^{3-}$. The tendency in the 18 electron compound for a semiconducting gap -- believed to arise from strong covalency -- is carried over in MnNiSb to a tendency for a gap in one spin direction. Here we similarly propose the systematic examination of 18-electron hexagonal compounds for semiconducting gaps; these would be the stuffed wurtzite analogues of the stuffed zinc blende half-Heusler compounds. These semiconductors could then serve as the basis for possibly new families of half-metallic compounds, attained through appropriate replacement of non-magnetic ions by magnetic ones. These semiconductors and semimetals with tunable charge carrier concentrations could also be interesting in the context of magnetoresistive and thermoelectric materials.



قيم البحث

اقرأ أيضاً

From first-principles calculations, we predict that transition metal (TM) atom doped silicon nanowires have a half-metallic ground state. They are insulators for one spin-direction, but show metallic properties for the opposite spin direction. At hig h coverage of TM atoms, ferromagnetic silicon nanowires become metallic for both spin-directions with high magnetic moment and may have also significant spin-polarization at the Fermi level. The spin-dependent electronic properties can be engineered by changing the type of dopant TM atoms, as well as the diameter of the nanowire. Present results are not only of scientific interest, but can also initiate new research on spintronic applications of silicon nanowires.
Since their discovery around a century ago, the structure and chemistry of the multi-functional half-Heusler semiconductors have been studied extensively as three component systems. The elemental groups constituting these ternary compounds with the n ominal formula XYZ are well established. From the very same set of well-known elements we explore a phase space of quaternary double ($XXY_2Z_2$, $X_2YYZ_2$, and $X_2Y_2ZZ$), triple ($X_2XY_3Z_3$) and quadruple ($X_3XY_4Z_4$) half-Heusler compositions which 10 times larger in size. Using a reliable, first-principles thermodynamics methodology on a selection of 347 novel compositions, we predict 127 new stable quaternary compounds, already more than the 89 reported almost exhaustively for ternary systems. Thermoelectric performance of the state-of-the-art ternary half-Heusler compounds are limited by their intrinsically high lattice thermal conductivity ($kappa_{L}$). In comparison to ternary half-Heuslers, thermal transport in double half-Heuslers is dominated by low frequency phonon modes with smaller group velocities and limited by disorder scattering. The double half-Heusler composition Ti$_2$FeNiSb$_2$ was synthesized and confirmed to have a significantly lower lattice thermal conductivity (factor of 3 at room temperature) than TiCoSb, thereby providing a better starting point for thermoelectric efficiency optimization. We demonstrate a dependable strategy to assist the search for low thermal conductivity half-Heuslers and point towards a huge composition space for implementing it. Our findings can be extended for systematic discovery of other large families of multi-component intermetallic semiconductors.
62 - S. Dag , S. Tongay , T. Yildirim 2005
We found that magnetic ground state of one-dimensional atomic chains of carbon-transition metal compounds exhibit half-metallic properties. They are semiconductors for one spin-direction, but show metallic properties for the opposite direction. The s pins are fully polarized at the Fermi level and net magnetic moment per unit cell is an integer multiple of Bohr magneton. The spin-dependent electronic structure can be engineered by changing the number of carbon and type of transition metal atoms. These chains, which are stable even at high temperature and some of which keep their spin-dependent electronic properties even under moderate axial strain, hold the promise of potential applications in nanospintronics.
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist ic spin-dynamics simulations. Experimentally, we find that the demagnetization time ($tau_{M}$) in films of $mathrm{Co_{2}FeAl}$ is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by $tau_{R}$, is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter ($alpha$). Our results show that $mathrm{Co_{2}FeAl}$ is unique, in that it is the first material that clearly demonstrates the importance of the damping parameter in the remagnetization process. Based on these results we argue that for $mathrm{Co_{2}FeAl}$ the remagnetization process is dominated by magnon dynamics, something which might have general applicability.
The half-Heusler compound has drawn attention in a variety of fields as a candidate material for thermoelectric energy conversion and spintronics technology. This is because it has various electronic structures, such as semi-metals, semiconductors, a nd a topological insulator. When the half-Heusler compound is incorporated into the device, the control of high lattice thermal conductivity owing to high crystal symmetry is a challenge for the thermal manager of the device. The calculation for the prediction of lattice thermal conductivity, which is an important physical parameter for controlling the thermal management of the device, requires a calculation cost of several 100 times as much as the usual density functional theory calculation. Therefore, we examined whether lattice thermal conductivity prediction by machine learning was possible on the basis of only the atomic information of constituent elements for thermal conductivity calculated by the density functional theory calculation in various half-Heusler compounds. Consequently, we constructed a machine learning model, which can predict the lattice thermal conductivity with high accuracy from the information of only atomic radius and atomic mass of each site in the half-Heusler type crystal structure. Applying our results, the lattice thermal conductivity for an unknown half-Heusler compound can be immediately predicted. In the future, low-cost and short-time development of new functional materials can be realized, leading to breakthroughs in the search of novel functional materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا