ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic competition induced colossal magnetoresistance in n-type HgCr2Se4 under high pressures

112   0   0.0 ( 0 )
 نشر من قبل J. P. Sun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The n-type HgCr2Se4 exhibits a sharp semiconductor-to-metal transition (SMT) in resistivity accompanying the ferromagnetic order at TC = 106 K. Here, we investigate the effects of pressure and magnetic field on the concomitant SMT and ferromagnetic order by measuring resistivity, dc and ac magnetic susceptibility, as well as single-crystal neutron diffraction under various pressures up to 8 GPa and magnetic fields up to 8 T. Our results demonstrate that the ferromagnetic metallic ground state of n-type HgCr2Se4 is destabilized and gradually replaced by an antiferromagnetic, most likely a spiral magnetic, and insulating ground state upon the application of high pressure. On the other hand, the application of external magnetic fields can restore the ferromagnetic metallic state again at high pressures, resulting in a colossal magnetoresistance (CMR) as high as ~ 3 * 10^11 % under 5 T and 2 K at 4 GPa. The present study demonstrates that n-type HgCr2Se4 is located at a peculiar critical point where the balance of competion between ferromagnetic and antiferromagnetic interactions can be easily tipped by the external stimuli, providing a new platform for achieving CMR in a single-valent system.

قيم البحث

اقرأ أيضاً

We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb$_{2}$, a nearly magnetic or Kondo semiconductor with 3d ions. We discuss contribution of orbital MR and quantum interference to enhanced magnetic field response of electrical resistivity.
High quality HgCr$_2$Se$_4$ single crystals have been investigated by magnetization, electron transport and Andreev reflection spectroscopy. In the ferromagnetic ground state, the saturation magnetic moment of each unit cell corresponds to an integer number of electron spins (3 $mu_B$/Cr$^{3+}$), and the Hall effect measurements suggest n-type charge carriers. Spin polarizations as high as $97%$ were obtained from fits of the differential conductance spectra of HgCr$_2$Se$_4$/Pb junctions with the modified Blonder-Tinkham-Klapwijk (BTK) theory. The temperature and bias-voltage dependencies of the sub-gap conductance are consistent with recent theoretical calculations based on spin active scatterings at a superconductor/half metal interface. Our results suggest that n-HgCr$_2$Se$_4$ is a half metal, in agreement with theoretical calculations that also predict undoped HgCr$_2$Se$_4$ is a magnetic Weyl semimetal.
270 - Y. Y. Xue 2000
A field-induced crossover is observed in the resistivity and magnetization (M) of a La(0.7)Pb(0.3)MnO(3) single crystal. The field-dependence of the resistivity and M suggests that a small spin-canted species with mean-field-like interactions dominat es at low fields (H), whereas, individual spins and 3D Ising/Heisenberg models describe the high-H behavior rather well. Around the ferromagnetic transition, an H-induced destruction of the small spin-canted magnetic polarons is accompanied by large magnetoresistance.
Quantum nematic phases are analogous to classical liquid crystals. Like liquid crystals, which break the rotational symmetries of space, their quantum analogues break the point-group symmetry of the crystal due to strong electron-electron interaction s, as in quantum Hall states, Sr3Ru2O7, and high temperature superconductors. Here, we present angle resolved magnetoresistance (AMRO) measurements that reveal a quantum nematic phase in the hexaboride EuB6. We identify the region in the temperature-magnetic field phase diagram where the magnetoresistance shows two-fold oscillations instead of the expected four-fold pattern. This is the same region where magnetic polarons were previously observed, suggesting that they drive the nematicity in EuB6. This is also the region of the phase diagram where EuB6 shows a colossal magnetoresistance (CMR). This novel interplay between magnetic and electronic properties could thus be harnessed for spintronic applications.
Here we investigate antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$, a nonsymmorphic Zintl phase. Our electrical transport data show that Eu$_{5}$In$_{2}$Sb$_{6}$ is remarkably insulating and exhibits an exceptionally large negative magnetoresistance, whi ch is consistent with the presence of magnetic polarons. From {it ab initio} calculations, the paramagnetic state of Eu$_{5}$In$_{2}$Sb$_{6}$ is a topologically nontrivial semimetal within the generalized gradient approximation (GGA), whereas an insulating state with trivial topological indices is obtained using a modified Becke-Johnson potential. Notably, GGA+U calculations suggest that the antiferromagnetic phase of Eu$_{5}$In$_{2}$Sb$_{6}$ may host an axion insulating state. Our results provide important feedback for theories of topological classification and highlight the potential of realizing clean magnetic narrow-gap semiconductors in Zintl materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا