ﻻ يوجد ملخص باللغة العربية
Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the Kolmogorov time scale $tau_eta$. In the inertial range, the particle distribution is no longer scale-invariant. It is however shown that deviations from uniformity depend on a rescaled contraction rate, which is different from the local Stokes number given by dimensional analysis. Particle distribution is characterized by voids spanning all scales of the turbulent flow; their signature in the coarse-grained mass probability distribution is an algebraic behavior at small densities.
We study motion of small particles in turbulence when the particle relaxation time falls in the range of inertial time-scales of the flow. Due to inertia, particles drift relative to the fluid. We show that the drift velocity is close to the Lagrangi
Clustering of inertial particles is important for many types of astrophysical and geophysical turbulence, but it has been studied predominately for incompressible flows. Here we study compressible flows and compare clustering in both compressively (i
We present a sweep-stick mechanism for heavy particles transported by a turbulent flow under the action of gravity. Direct numerical simulations show that these particles preferentially explore regions of the flow with close to zero Lagrangian accele
Despite considerable progress during the last decades in devising a semiclassical theory for classically chaotic quantum systems a quantitative semiclassical understanding of their dynamics at late times (beyond the so-called Heisenberg time $T_H$) i
A recent model of Ariel et al. [1] for explaining the observation of Levy walks in swarming bacteria suggests that self-propelled, elongated particles in a periodic array of regular vortices perform a super-diffusion that is consistent with Levy walk