ترغب بنشر مسار تعليمي؟ اضغط هنا

A constrained ICA-EMD Model for Group Level fMRI Analysis

102   0   0.0 ( 0 )
 نشر من قبل Simon Wein
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Independent component analysis (ICA), as a data driven method, has shown to be a powerful tool for functional magnetic resonance imaging (fMRI) data analysis. One drawback of this multivariate approach is, that it is not compatible to the analysis of group data in general. Therefore various techniques have been proposed in order to overcome this limitation of ICA. In this paper a novel ICA-based work-flow for extracting resting state networks from fMRI group studies is proposed. An empirical mode decomposition (EMD) is used to generate reference signals in a data driven manner, which can be incorporated into a constrained version of ICA (cICA), what helps to eliminate the inherent ambiguities of ICA. The results of the proposed workflow are then compared to those obtained by a widely used group ICA approach for fMRI analysis. In this paper it is demonstrated that intrinsic modes, extracted by EMD, are suitable to serve as references for cICA to obtain typical resting state patterns, which are consistent over subjects. By introducing these reference signals into the ICA, our processing pipeline makes it transparent for the user, how comparable activity patterns across subjects emerge. This additionally allows adapting the trade-off between enforcing similarity across subjects and preserving individual subject features.



قيم البحث

اقرأ أيضاً

Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining insights into cognitive processes in humans. Data amassed from fMRI measurements result in volumetric data sets that vary over time. However, analysing such data present s a challenge due to the large degree of noise and person-to-person variation in how information is represented in the brain. To address this challenge, we present a novel topological approach that encodes each time point in an fMRI data set as a persistence diagram of topological features, i.e. high-dimensional voids present in the data. This representation naturally does not rely on voxel-by-voxel correspondence and is robust to noise. We show that these time-varying persistence diagrams can be clustered to find meaningful groupings between participants, and that they are also useful in studying within-subject brain state trajectories of subjects performing a particular task. Here, we apply both clustering and trajectory analysis techniques to a group of participants watching the movie Partly Cloudy. We observe significant differences in both brain state trajectories and overall topological activity between adults and children watching the same movie.
195 - Gael Varoquaux 2010
Spatial Independent Components Analysis (ICA) is increasingly used in the context of functional Magnetic Resonance Imaging (fMRI) to study cognition and brain pathologies. Salient features present in some of the extracted Independent Components (ICs) can be interpreted as brain networks, but the segmentation of the corresponding regions from ICs is still ill-controlled. Here we propose a new ICA-based procedure for extraction of sparse features from fMRI datasets. Specifically, we introduce a new thresholding procedure that controls the deviation from isotropy in the ICA mixing model. Unlike current heuristics, our procedure guarantees an exact, possibly conservative, level of specificity in feature detection. We evaluate the sensitivity and specificity of the method on synthetic and fMRI data and show that it outperforms state-of-the-art approaches.
Learning latent features from time series data is an important problem in both machine learning and brain function. One approach, called Slow Feature Analysis (SFA), leverages the slowness of many salient features relative to the rapidly varying inpu t signals. Furthermore, when trained on naturalistic stimuli, SFA reproduces interesting properties of cells in the primary visual cortex and hippocampus, suggesting that the brain uses temporal slowness as a computational principle for learning latent features. However, despite the potential relevance of SFA for modeling brain function, there is currently no SFA algorithm with a biologically plausible neural network implementation, by which we mean an algorithm operates in the online setting and can be mapped onto a neural network with local synaptic updates. In this work, starting from an SFA objective, we derive an SFA algorithm, called Bio-SFA, with a biologically plausible neural network implementation. We validate Bio-SFA on naturalistic stimuli.
This tutorial paper refers to the use of graph-theoretic concepts for analyzing brain signals. For didactic purposes it splits into two parts: theory and application. In the first part, we commence by introducing some basic elements from graph theory and stemming algorithmic tools, which can be employed for data-analytic purposes. Next, we describe how these concepts are adapted for handling evolving connectivity and gaining insights into network reorganization. Finally, the notion of signals residing on a given graph is introduced and elements from the emerging field of graph signal processing (GSP) are provided. The second part serves as a pragmatic demonstration of the tools and techniques described earlier. It is based on analyzing a multi-trial dataset containing single-trial responses from a visual ERP paradigm. The paper ends with a brief outline of the most recent trends in graph theory that are about to shape brain signal processing in the near future and a more general discussion on the relevance of graph-theoretic methodologies for analyzing continuous-mode neural recordings.
120 - Ze Wang 2021
Long-range temporal coherence (LRTC) is quite common to dynamic systems and is fundamental to the system function. LRTC in the brain has been shown to be important to cognition. Assessing LRTC may provide critical information for understanding the po tential underpinnings of brain organization, function, and cognition. To facilitate this overarching goal, we provide a method, which is named temporal coherence mapping (TCM), to explicitly quantify LRTC using resting state fMRI. TCM is based on correlation analysis of the transit states of the phase space reconstructed by temporal embedding. A few TCM properties were collected to measure LRTC, including the averaged correlation, anti-correlation, the ratio of correlation and anticorrelation, the mean coherent and incoherent duration, and the ratio between the coherent and incoherent time. TCM was first evaluated with simulations and then with the large Human Connectome Project data. Evaluation results showed that TCM metrics can successfully differentiate signals with different temporal coherence regardless of the parameters used to reconstruct the phase space. In human brain, TCM metrics except the ratio of the coherent/incoherent time showed high test-retest reproducibility; TCM metrics are related to age, sex, and total cognitive scores. In summary, TCM provides a first-of-its-kind tool to assess LRTC and the imbalance between coherence and incoherence; TCM properties are physiologically and cognitively meaningful.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا