ﻻ يوجد ملخص باللغة العربية
Spatial Independent Components Analysis (ICA) is increasingly used in the context of functional Magnetic Resonance Imaging (fMRI) to study cognition and brain pathologies. Salient features present in some of the extracted Independent Components (ICs) can be interpreted as brain networks, but the segmentation of the corresponding regions from ICs is still ill-controlled. Here we propose a new ICA-based procedure for extraction of sparse features from fMRI datasets. Specifically, we introduce a new thresholding procedure that controls the deviation from isotropy in the ICA mixing model. Unlike current heuristics, our procedure guarantees an exact, possibly conservative, level of specificity in feature detection. We evaluate the sensitivity and specificity of the method on synthetic and fMRI data and show that it outperforms state-of-the-art approaches.
The primordial power spectrum is an indirect probe of inflation or other structure-formation mechanisms. We introduce a new method, named textbf{PRISM}, to estimate this spectrum from the empirical cosmic microwave background (CMB) power spectrum. Th
Independent component analysis (ICA), as a data driven method, has shown to be a powerful tool for functional magnetic resonance imaging (fMRI) data analysis. One drawback of this multivariate approach is, that it is not compatible to the analysis of
Independent Component Analysis (ICA) is an effective unsupervised tool to learn statistically independent representation. However, ICA is not only sensitive to whitening but also difficult to learn an over-complete basis. Consequently, ICA with soft
Functional magnetic resonance imaging (fMRI) has provided invaluable insight into our understanding of human behavior. However, large inter-individual differences in both brain anatomy and functional localization after anatomical alignment remain a m
Arterial Spin Labelling (ASL) functional Magnetic Resonance Imaging (fMRI) data provides a quantitative measure of blood perfusion, that can be correlated to neuronal activation. In contrast to BOLD measure, it is a direct measure of cerebral blood f