ترغب بنشر مسار تعليمي؟ اضغط هنا

Flaring, Dust Formation, And Shocks In The Very Slow Nova ASASSN-17pf (LMCN 2017-11a)

61   0   0.0 ( 0 )
 نشر من قبل Elias Aydi Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the 2017 eruption of the classical nova ASASSN-17pf (LMCN 2017-11a), which is located in the Large Magellanic Cloud, including data from AAVSO, ASAS-SN, SALT, SMARTS, SOAR, and the Neil Gehrels textit{Swift} Observatory. The optical light-curve is characterized by multiple maxima (flares) on top of a slowly evolving light-curve (with a decline time, $t_2>$ 100 d). The maxima correlate with the appearance of new absorption line systems in the optical spectra characterized by increasing radial velocities. We suggest that this is evidence of multiple episodes of mass-ejection with increasing expansion velocities. The line profiles in the optical spectra indicate very low expansion velocities (FWHM $sim$ 190 km s$^{-1}$), making this nova one of the slowest expanding ever observed, consistent with the slowly evolving light-curve. The evolution of the colors and spectral energy distribution show evidence of decreasing temperatures and increasing effective radii for the pseudo-photosphere during each maximum. The optical and infrared light-curves are consistent with dust formation 125 days post-discovery. We speculate that novae showing several optical maxima have multiple mass-ejection episodes leading to shocks that may drive $gamma$-ray emission and dust formation.



قيم البحث

اقرأ أيضاً

The discovery that many classical novae produce detectable GeV $gamma$-ray emission has raised the question of the role of shocks in nova eruptions. Here we use radio observations of nova V809 Cep (Nova Cep 2013) with the Jansky Very Large Array to s how that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about six weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times -- more than a six months or so into the eruption -- is consistent with thermal emission from $10^{-4} M_odot$ of freely expanding, $10^4$~K ejecta. At 4.6 and 7.4 GHz, however, the radio light-curves display an initial early-time peak 76 days after the discovery of the eruption in the optical ($t_0$). The brightness temperature at 4.6 GHz on day 76 was greater than $10^5 K$, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free-free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.
Evidence for shocks in nova outflows include (1) multiple velocity components in the optical spectra; (2) keV X-ray emission weeks to months after the outburst; (3) early radio flare on timescales of months, in excess of that predicted from the freel y expanding photo-ionized gas; and (4) ~ GeV gamma-rays. We present a 1D model for the shock interaction between the fast nova outflow and a dense external shell (DES) and its associated thermal X-ray, optical, and radio emission. The forward shock is radiative initially when the density of shocked gas is highest, at which times radio emission originates from the dense cooling layer immediately downstream of the shock. The radio light curve is characterized by sharper rises to maximum and later peak times at progressively lower frequencies, with a peak brightness temperature that is approximately independent of frequency. We apply our model to the recent gamma-ray classical nova V1324 Sco, obtaining an adequate fit to the early radio maximum for reasonable assumptions about the fast nova outflow and assuming the DES possesses a velocity ~1e3 km/s and mass ~ 2e-4 M_sun; the former is consistent with the velocities of narrow line absorption systems observed previously in nova spectra, while the total ejecta mass of the DES and fast outflow is consistent with that inferred independently by modeling the late radio peak. Rapid evolution of the early radio light curves require the DES possess a steep outer density profile, which may indicate that the onset of mass loss from the white dwarf was rapid, providing indirect evidence that the DES was expelled by the thermonuclear runaway event. Reprocessed X-rays from the shock absorbed by the DES at early times may contribute significantly to the optical/UV emission, which we speculate is responsible for the previously unexplained `plateaus and secondary maxima in nova optical light curves.
Shocks in gamma-ray emitting classical novae are expected to produce bright thermal and non-thermal X-rays. We test this prediction with simultaneous NuSTAR and Fermi/LAT observations of nova V906 Car, which exhibited the brightest GeV gamma-ray emis sion to date. The nova is detected in hard X-rays while it is still gamma-ray bright, but contrary to simple theoretical expectations, the detected 3.5-78 keV emission of V906 Car is much weaker than the simultaneously observed >100 MeV emission. No non-thermal X-ray emission is detected, and our deep limits imply that the gamma-rays are likely hadronic. After correcting for substantial absorption (N_H ~ 2 x 10^23 cm^-2), the thermal X-ray luminosity (from a 9 keV optically-thin plasma) is just ~2% of the gamma-ray luminosity. We consider possible explanations for the low thermal X-ray luminosity, including the X-rays being suppressed by corrugated, radiative shock fronts or the X-rays from the gamma-ray producing shock are hidden behind an even larger absorbing column (N_H >10^25 cm^-2). Adding XMM-Newton and Swift/XRT observations to our analysis, we find that the evolution of the intrinsic X-ray absorption requires the nova shell to be expelled 24 days after the outburst onset. The X-ray spectra show that the ejecta are enhanced in nitrogen and oxygen, and the nova occurred on the surface of a CO-type white dwarf. We see no indication of a distinct super-soft phase in the X-ray lightcurve, which, after considering the absorption effects, may point to a low mass of the white dwarf hosting the nova.
The All Sky Automated Survey for SuperNovae (ASAS-SN) reported a possible Galactic dwarf nova ASASSN-18fs on 2018 March 19 at $sim$13.2 mag in the V band, with a quiescent magnitude of V$>$17.6. Here we report on the follow-up photometry using the {it Neil Gehrels Swift Observatory}.
85 - Gavin Ramsay 2016
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion disks around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photo-electric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Pegs transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا