ترغب بنشر مسار تعليمي؟ اضغط هنا

Shocks in nova outflows. I. Thermal emission

125   0   0.0 ( 0 )
 نشر من قبل Brian Metzger
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Evidence for shocks in nova outflows include (1) multiple velocity components in the optical spectra; (2) keV X-ray emission weeks to months after the outburst; (3) early radio flare on timescales of months, in excess of that predicted from the freely expanding photo-ionized gas; and (4) ~ GeV gamma-rays. We present a 1D model for the shock interaction between the fast nova outflow and a dense external shell (DES) and its associated thermal X-ray, optical, and radio emission. The forward shock is radiative initially when the density of shocked gas is highest, at which times radio emission originates from the dense cooling layer immediately downstream of the shock. The radio light curve is characterized by sharper rises to maximum and later peak times at progressively lower frequencies, with a peak brightness temperature that is approximately independent of frequency. We apply our model to the recent gamma-ray classical nova V1324 Sco, obtaining an adequate fit to the early radio maximum for reasonable assumptions about the fast nova outflow and assuming the DES possesses a velocity ~1e3 km/s and mass ~ 2e-4 M_sun; the former is consistent with the velocities of narrow line absorption systems observed previously in nova spectra, while the total ejecta mass of the DES and fast outflow is consistent with that inferred independently by modeling the late radio peak. Rapid evolution of the early radio light curves require the DES possess a steep outer density profile, which may indicate that the onset of mass loss from the white dwarf was rapid, providing indirect evidence that the DES was expelled by the thermonuclear runaway event. Reprocessed X-rays from the shock absorbed by the DES at early times may contribute significantly to the optical/UV emission, which we speculate is responsible for the previously unexplained `plateaus and secondary maxima in nova optical light curves.



قيم البحث

اقرأ أيضاً

We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array and spanning 1-45 GHz and 17-770 days following discovery. This nova---the first ever detected in gamma rays---shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grew as the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass loss rate for the Mira wind of Mdot_w ~ 10^-6 M_sun/yr. We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of >~20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.
60 - E. Aydi , L. Chomiuk , J. Strader 2019
We present a detailed study of the 2017 eruption of the classical nova ASASSN-17pf (LMCN 2017-11a), which is located in the Large Magellanic Cloud, including data from AAVSO, ASAS-SN, SALT, SMARTS, SOAR, and the Neil Gehrels textit{Swift} Observatory . The optical light-curve is characterized by multiple maxima (flares) on top of a slowly evolving light-curve (with a decline time, $t_2>$ 100 d). The maxima correlate with the appearance of new absorption line systems in the optical spectra characterized by increasing radial velocities. We suggest that this is evidence of multiple episodes of mass-ejection with increasing expansion velocities. The line profiles in the optical spectra indicate very low expansion velocities (FWHM $sim$ 190 km s$^{-1}$), making this nova one of the slowest expanding ever observed, consistent with the slowly evolving light-curve. The evolution of the colors and spectral energy distribution show evidence of decreasing temperatures and increasing effective radii for the pseudo-photosphere during each maximum. The optical and infrared light-curves are consistent with dust formation 125 days post-discovery. We speculate that novae showing several optical maxima have multiple mass-ejection episodes leading to shocks that may drive $gamma$-ray emission and dust formation.
Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky. The standard model of novae predicts that their optical lu minosity derives from energy released near the hot white dwarf which is reprocessed through the ejected material. Recent studies with the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt gamma-ray emission. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories to study the unknown efficiency of particle acceleration in shocks. Here we report gamma-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in gamma-rays. The gamma-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf. The ratio of gamma-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be ~0.005, favouring hadronic models for the gamma-ray emission. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.
The discovery that many classical novae produce detectable GeV $gamma$-ray emission has raised the question of the role of shocks in nova eruptions. Here we use radio observations of nova V809 Cep (Nova Cep 2013) with the Jansky Very Large Array to s how that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about six weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times -- more than a six months or so into the eruption -- is consistent with thermal emission from $10^{-4} M_odot$ of freely expanding, $10^4$~K ejecta. At 4.6 and 7.4 GHz, however, the radio light-curves display an initial early-time peak 76 days after the discovery of the eruption in the optical ($t_0$). The brightness temperature at 4.6 GHz on day 76 was greater than $10^5 K$, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free-free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.
In the framework of the Water in Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This pap er reports the first results of this program, presenting a PACS map of the o-H2O 179 um transition obtained toward the young outflow L1157. The 179 um map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the water abundance and total cooling. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 um emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 um intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10^-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total water cooling is ~10^-1 Lo, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا