ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Relaxation Time Lattice Boltzmann Method Coupled to Fast Fourier Transform Poisson Solver: Application to Electroconvective Flow

126   0   0.0 ( 0 )
 نشر من قبل Yifei Guan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electroconvective flow between two infinitely long parallel electrodes is investigated via a multiphysics computational model. The model solves for spatiotemporal flow properties using two-relaxation-time Lattice Boltzmann Method for fluid and charge transport coupled to Fast Fourier Transport Poisson solver for the electric potential. The segregated model agrees with the previous analytical and numerical results providing a robust approach for modeling electrohydrodynamic flows.



قيم البحث

اقرأ أيضاً

In this article, a coupled Two-relaxation-time Lattice Boltzmann-Volume penalization (TRT-LBM-VP) method is presented to simulate flows past obstacles. Two relaxation times are used in the collision operator, of which one is related to the fluid visc osity and the other one is related to the numerical stability and accuracy. The volume penalization method is introduced into the TRT-LBM by an external forcing term. In the procedure of the TRT-LBM-VP, the processes of interpolating velocities on the boundaries points and distributing the force density to the Eulerian points are unneeded. Performing the TRT-LBM-VP on a certain point, only the variables of this point are needed. As a consequence, the TRT-LBM-VP can be conducted parallelly. From the comparison between the result of the cylindrical Couette flow solved by the TRT-LBM-VP and that solved by the Single-relaxation-time LBM-VP (SRT-LBM-VP), the accuracy of the TRT-LBM-VP is higher than that of the SRT-LBM-VP. Flows past a single circular cylinder, a pair of cylinders in tandem and side-by-side arrangements, two counter-rotating cylinders and a NACA-0012 airfoil are chosen as numerical experiments to verify the present method further. Good agreements between the present results and those in the previous literatures are achieved.
We develop a theoretical and computational approach to deal with systems that involve a disparate range of spatio-temporal scales, such as those comprised of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is b ased on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multi-component Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multi-component description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. In the end, we discuss the advantages and complexities of the approach.
In this paper, a multiple-distribution-function lattice Boltzmann method (MDF-LBM) with multiple-relaxation-time model is proposed for incompressible Navier-Stokes equations (NSEs) which are considered as the coupled convection-diffusion equations (C DEs). Through direct Taylor expansion analysis, we show that the Navier-Stokes equations can be recovered correctly from the present MDF-LBM, and additionally, it is also found that the velocity and pressure can be directly computed through the zero and first-order moments of distribution function. Then in the framework of present MDF-LBM, we develop a locally computational scheme for the velocity gradient where the first-order moment of the non-equilibrium distribution is used, this scheme is also extended to calculate the velocity divergence, strain rate tensor, shear stress and vorticity. Finally, we also conduct some simulations to test the MDF-LBM, and find that the numerical results not only agree with some available analytical and numerical solutions, but also have a second-order convergence rate in space.
This paper addresses how two time integration schemes, the Heuns scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a c oupled Large Eddy Simulation / Reynolds Averaged Navier-Stokes computation in an industrial context, using the implicit time procedure for the boundary layer (RANS) and the explicit time integration procedure in the LES region. The coupling procedure is designed in order to switch from explicit to implicit time integrations as fast as possible, while maintaining stability. After introducing the different schemes, the paper presents the initial coupling procedure adapted from a published reference and shows that it can amplify some numerical waves. An alternative procedure, studied in a coupled time/space framework, is shown to be stable and with spectral properties in agreement with the requirements of industrial applications. The coupling technique is validated with standard test cases, ranging from one-dimensional to three-dimensional flows.
204 - Q. Li , Y. L. He , G. H. Tang 2009
In this brief report, a thermal lattice-Boltzmann (LB) model is presented for axisymmetric thermal flows in the incompressible limit. The model is based on the double-distribution-function LB method, which has attracted much attention since its emerg ence for its excellent numerical stability. Compared with the existing axisymmetric thermal LB models, the present model is simpler and retains the inherent features of the standard LB method. Numerical simulations are carried out for the thermally developing laminar flows in circular ducts and the natural convection in an annulus between two coaxial vertical cylinders. The Nusselt number obtained from the simulations agrees well with the analytical solutions and/or the results reported in previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا