ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Data Analysis in Information Space

105   0   0.0 ( 0 )
 نشر من قبل Hubert Wagner
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable usage of existing computational topology software in this context.


قيم البحث

اقرأ أيضاً

In this article, we show how the recent statistical techniques developed in Topological Data Analysis for the Mapper algorithm can be extended and leveraged to formally define and statistically quantify the presence of topological structures coming f rom biological phenomena in datasets of CCC contact maps.
We introduce a novel gradient descent algorithm extending the well-known Gradient Sampling methodology to the class of stratifiably smooth objective functions, which are defined as locally Lipschitz functions that are smooth on some regular pieces-ca lled the strata-of the ambient Euclidean space. For this class of functions, our algorithm achieves a sub-linear convergence rate. We then apply our method to objective functions based on the (extended) persistent homology map computed over lower-star filters, which is a central tool of Topological Data Analysis. For this, we propose an efficient exploration of the corresponding stratification by using the Cayley graph of the permutation group. Finally, we provide benchmark and novel topological optimization problems, in order to demonstrate the utility and applicability of our framework.
Data analysis often concerns not only the space where data come from, but also various types of maps attached to data. In recent years, several related structures have been used to study maps on data, including Reeb spaces, mappers and multiscale map pers. The construction of these structures also relies on the so-called emph{nerve} of a cover of the domain. In this paper, we aim to analyze the topological information encoded in these structures in order to provide better understanding of these structures and facilitate their practical usage. More specifically, we show that the one-dimensional homology of the nerve complex $N(mathcal{U})$ of a path-connected cover $mathcal{U}$ of a domain $X$ cannot be richer than that of the domain $X$ itself. Intuitively, this result means that no new $H_1$-homology class can be created under a natural map from $X$ to the nerve complex $N(mathcal{U})$. Equipping $X$ with a pseudometric $d$, we further refine this result and characterize the classes of $H_1(X)$ that may survive in the nerve complex using the notion of emph{size} of the covering elements in $mathcal{U}$. These fundamental results about nerve complexes then lead to an analysis of the $H_1$-homology of Reeb spaces, mappers and multiscale mappers. The analysis of $H_1$-homology groups unfortunately does not extend to higher dimensions. Nevertheless, by using a map-induced metric, establishing a Gromov-Hausdorff convergence result between mappers and the domain, and interleaving relevant modules, we can still analyze the persistent homology groups of (multiscale) mappers to establish a connection to Reeb spaces.
188 - Lucas Magee , Yusu Wang 2021
Geometric graphs form an important family of hidden structures behind data. In this paper, we develop an efficient and robust algorithm to infer a graph skeleton behind a point cloud data (PCD)embedded in high dimensional space. Previously, there has been much work to recover a hidden graph from a low-dimensional density field, or from a relatively clean high-dimensional PCD (in the sense that the input points are within a small bounded distance to a true hidden graph). Our proposed approach builds upon the recent line of work on using a persistence-guided discrete Morse (DM) theory based approach to reconstruct a geometric graph from a density field defined over a triangulation of low-dimensional Euclidean domain. In particular, we first give a very simple generalization of this DM-based algorithm from a density-function perspective to a general filtration perspective. On the theoretical front, we show that the output of the generalized algorithm contains a so-called lexicographic-optimal persistent cycle basis w.r.t the input filtration, justifying that the output is indeed meaningful. On the algorithmic front, this generalization allows us to use the idea of sparsified weighted Rips filtration (developed by Buchet etal) to develop a new graph reconstruction algorithm for noisy point cloud data (PCD) (which do not need to be embedded). The new algorithm is robust to background noise and non-uniform distribution of input points. We provide various experimental results to show the efficiency and effectiveness of our new graph reconstruction algorithm for PCDs.
Statistical analysis on object data presents many challenges. Basic summaries such as means and variances are difficult to compute. We apply ideas from topology to study object data. We present a framework for using persistence landscapes to vectoriz e object data and perform statistical analysis. We apply to this pipeline to some biological images that were previously shown to be challenging to study using shape theory. Surprisingly, the most persistent features are shown to be topological noise and the statistical analysis depends on the less persistent features which we refer to as the geometric signal. We also describe the first steps to a new approach to using topology for object data analysis, which applies topology to distributions on object spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا