ﻻ يوجد ملخص باللغة العربية
Data analysis often concerns not only the space where data come from, but also various types of maps attached to data. In recent years, several related structures have been used to study maps on data, including Reeb spaces, mappers and multiscale mappers. The construction of these structures also relies on the so-called emph{nerve} of a cover of the domain. In this paper, we aim to analyze the topological information encoded in these structures in order to provide better understanding of these structures and facilitate their practical usage. More specifically, we show that the one-dimensional homology of the nerve complex $N(mathcal{U})$ of a path-connected cover $mathcal{U}$ of a domain $X$ cannot be richer than that of the domain $X$ itself. Intuitively, this result means that no new $H_1$-homology class can be created under a natural map from $X$ to the nerve complex $N(mathcal{U})$. Equipping $X$ with a pseudometric $d$, we further refine this result and characterize the classes of $H_1(X)$ that may survive in the nerve complex using the notion of emph{size} of the covering elements in $mathcal{U}$. These fundamental results about nerve complexes then lead to an analysis of the $H_1$-homology of Reeb spaces, mappers and multiscale mappers. The analysis of $H_1$-homology groups unfortunately does not extend to higher dimensions. Nevertheless, by using a map-induced metric, establishing a Gromov-Hausdorff convergence result between mappers and the domain, and interleaving relevant modules, we can still analyze the persistent homology groups of (multiscale) mappers to establish a connection to Reeb spaces.
The Reeb space, which generalizes the notion of a Reeb graph, is one of the few tools in topological data analysis and visualization suitable for the study of multivariate scientific datasets. First introduced by Edelsbrunner et al., it compresses th
In this article, we show how the recent statistical techniques developed in Topological Data Analysis for the Mapper algorithm can be extended and leveraged to formally define and statistically quantify the presence of topological structures coming f
Almost all statistical and machine learning methods in analyzing brain networks rely on distances and loss functions, which are mostly Euclidean or matrix norms. The Euclidean or matrix distances may fail to capture underlying subtle topological diff
Algorithms for persistent homology and zigzag persistent homology are well-studied for persistence modules where homomorphisms are induced by inclusion maps. In this paper, we propose a practical algorithm for computing persistence under $mathbb{Z}_2
Reeb graphs are structural descriptors that capture shape properties of a topological space from the perspective of a chosen function. In this work we define a combinatorial metric for Reeb graphs of orientable surfaces in terms of the cost necessary