ﻻ يوجد ملخص باللغة العربية
Compact convolutional neural networks gain efficiency mainly through depthwise convolutions, expanded channels and complex topologies, which contrarily aggravate the training process. Besides, 3x3 kernels dominate the spatial representation in these models, whereas even-sized kernels (2x2, 4x4) are rarely adopted. In this work, we quantify the shift problem occurs in even-sized kernel convolutions by an information erosion hypothesis, and eliminate it by proposing symmetric padding on four sides of the feature maps (C2sp, C4sp). Symmetric padding releases the generalization capabilities of even-sized kernels at little computational cost, making them outperform 3x3 kernels in image classification and generation tasks. Moreover, C2sp obtains comparable accuracy to emerging compact models with much less memory and time consumption during training. Symmetric padding coupled with even-sized convolutions can be neatly implemented into existing frameworks, providing effective elements for architecture designs, especially on online and continual learning occasions where training efforts are emphasized.
Light-weight convolutional neural networks (CNNs) suffer performance degradation as their low computational budgets constrain both the depth (number of convolution layers) and the width (number of channels) of CNNs, resulting in limited representatio
3D object detection is vital for many robotics applications. For tasks where a 2D perspective range image exists, we propose to learn a 3D representation directly from this range image view. To this end, we designed a 2D convolutional network archite
Zero padding is widely used in convolutional neural networks to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border. As an alternative, we propose a context-aware (CA) padding ap
Recently, deep learning methods have been proposed for quantitative susceptibility mapping (QSM) data processing: background field removal, field-to-source inversion, and single-step QSM reconstruction. However, the conventional padding mechanism use
Sparse voxel-based 3D convolutional neural networks (CNNs) are widely used for various 3D vision tasks. Sparse voxel-based 3D CNNs create sparse non-empty voxels from the 3D input and perform 3D convolution operations on them only. We propose a simpl