ﻻ يوجد ملخص باللغة العربية
Sparse voxel-based 3D convolutional neural networks (CNNs) are widely used for various 3D vision tasks. Sparse voxel-based 3D CNNs create sparse non-empty voxels from the 3D input and perform 3D convolution operations on them only. We propose a simple yet effective padding scheme --- interpolation-aware padding to pad a few empty voxels adjacent to the non-empty voxels and involve them in the 3D CNN computation so that all neighboring voxels exist when computing point-wise features via the trilinear interpolation. For fine-grained 3D vision tasks where point-wise features are essential, like semantic segmentation and 3D detection, our network achieves higher prediction accuracy than the existing networks using the nearest neighbor interpolation or the normalized trilinear interpolation with the zero-padding or the octree-padding scheme. Through extensive comparisons on various 3D segmentation and detection tasks, we demonstrate the superiority of 3D sparse CNNs with our padding scheme in conjunction with feature interpolation.
Convolutional Neural Networks (CNNs) have achieved great success due to the powerful feature learning ability of convolution layers. Specifically, the standard convolution traverses the input images/features using a sliding window scheme to extract f
Acceleration of deep neural networks to meet a specific latency constraint is essential for their deployment on mobile devices. In this paper, we design an architecture aware latency constrained sparse (ALCS) framework to prune and accelerate CNN mod
Zero padding is widely used in convolutional neural networks to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border. As an alternative, we propose a context-aware (CA) padding ap
Automated methods for breast cancer detection have focused on 2D mammography and have largely ignored 3D digital breast tomosynthesis (DBT), which is frequently used in clinical practice. The two key challenges in developing automated methods for DBT
Image retargeting is the task of making images capable of being displayed on screens with different sizes. This work should be done so that high-level visual information and low-level features such as texture remain as intact as possible to the human