ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) often suffer from catastrophic forgetting during incremental learning (IL) --- an abrupt degradation of performance on the original set of classes when the training objective is adapted to a newly added set of classes. Existing IL approaches tend to produce a model that is biased towards either the old classes or new classes, unless with the help of exemplars of the old data. To address this issue, we propose a class-incremental learning paradigm called Deep Model Consolidation (DMC), which works well even when the original training data is not available. The idea is to first train a separate model only for the new classes, and then combine the two individual models trained on data of two distinct set of classes (old classes and new classes) via a novel double distillation training objective. The two existing models are consolidated by exploiting publicly available unlabeled auxiliary data. This overcomes the potential difficulties due to the unavailability of original training data. Compared to the state-of-the-art techniques, DMC demonstrates significantly better performance in image classification (CIFAR-100 and CUB-200) and object detection (PASCAL VOC 2007) in the single-headed IL setting.
The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN
We address the problem of class incremental learning, which is a core step towards achieving adaptive vision intelligence. In particular, we consider the task setting of incremental learning with limited memory and aim to achieve better stability-pla
Modern computer vision applications suffer from catastrophic forgetting when incrementally learning new concepts over time. The most successful approaches to alleviate this forgetting require extensive replay of previously seen data, which is problem
Although deep learning performs really well in a wide variety of tasks, it still suffers from catastrophic forgetting -- the tendency of neural networks to forget previously learned information upon learning new tasks where previous data is not avail
The challenge of the Class Incremental Learning~(CIL) lies in difficulty for a learner to discern the old classes data from the new as no previous classes data is preserved. In this paper, we reveal three causes for catastrophic forgetting at the rep