ﻻ يوجد ملخص باللغة العربية
The challenge of the Class Incremental Learning~(CIL) lies in difficulty for a learner to discern the old classes data from the new as no previous classes data is preserved. In this paper, we reveal three causes for catastrophic forgetting at the representational level, namely, representation forgetting, representation overlapping, and classifier deviation. Based on the observation above, we propose a new CIL framework, Contrastive Class Concentration for CIL (C4IL) to alleviate the phenomenon of representation overlapping that works in both memory-based and memory-free methods. Our framework leverages the class concentration effect of contrastive representation learning, therefore yielding a representation distribution with better intra-class compatibility and inter-class separability. Quantitative experiments showcase the effectiveness of our framework: it outperforms the baseline methods by 5% in terms of the average and top-1 accuracy in 10-phase and 20-phase CIL. Qualitative results also demonstrate that our method generates a more compact representation distribution that alleviates the overlapping problem.
We address the problem of class incremental learning, which is a core step towards achieving adaptive vision intelligence. In particular, we consider the task setting of incremental learning with limited memory and aim to achieve better stability-pla
The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN
Deep neural networks (DNNs) have been applied in class incremental learning, which aims to solve common real-world problems of learning new classes continually. One drawback of standard DNNs is that they are prone to catastrophic forgetting. Knowledg
Deep neural networks (DNNs) often suffer from catastrophic forgetting during incremental learning (IL) --- an abrupt degradation of performance on the original set of classes when the training objective is adapted to a newly added set of classes. Exi
Regularization-based methods are beneficial to alleviate the catastrophic forgetting problem in class-incremental learning. With the absence of old task images, they often assume that old knowledge is well preserved if the classifier produces similar