ﻻ يوجد ملخص باللغة العربية
Column generation is often used to solve multi-commodity flow problems. A program for column generation always includes a module that solves a linear equation. In this paper, we address three major issues in solving linear problem during column generation procedure which are (1) how to employ the sparse property of the coefficient matrix; (2) how to reduce the size of the coefficient matrix; and (3) how to reuse the solution to a similar equation. To this end, we first analyze the sparse property of coefficient matrix of linear equations and find that the matrices occurring in iteration are very sparse. Then, we present an algorithm locSolver (for localized system solver) for linear equations with sparse coefficient matrices and right-hand-sides. This algorithm can reduce the number of variables. After that, we present the algorithm incSolver (for incremental system solver) which utilizes similarity in the iterations of the program for a linear equation system. All three techniques can be used in column generation of multi-commodity problems. Preliminary numerical experiments show that the incSolver is significantly faster than the existing algorithms. For example, random test cases show that incSolver is at least 37 times and up to 341 times faster than popular solver LAPACK.
In this paper, we develop a new algorithm combining the idea of ``boosting with the first-order algorithm to approximately solve a class of (Integer) Linear programs(LPs) arisen in general resource allocation problems. Not only can this algorithm sol
This paper gives a localized method for the multi-commodity flow problem. We relax both the capacity constraints and flow conservation constraints, and introduce a congestion function $psi$ for each arc and $height$ function $h$ for each vertex and c
Motivated by scheduling in Geo-distributed data analysis, we propose a target location problem for multi-commodity flow (LoMuF for short). Given commodities to be sent from their resources, LoMuF aims at locating their targets so that the multi-commo
This paper discusses the odds problem, proposed by Bruss in 2000, and its variants. A recurrence relation called a dynamic programming (DP) equation is used to find an optimal stopping policy of the odds problem and its variants. In 2013, Buchbinder,
We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography and economics. To solve these