ترغب بنشر مسار تعليمي؟ اضغط هنا

Boosting Method in Approximately Solving Linear Programming with Fast Online Algorithm

197   0   0.0 ( 0 )
 نشر من قبل Chunlin Sun
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop a new algorithm combining the idea of ``boosting with the first-order algorithm to approximately solve a class of (Integer) Linear programs(LPs) arisen in general resource allocation problems. Not only can this algorithm solve LPs directly, but also can be applied to accelerate the Column Generation method. As a direct solver, our algorithm achieves a provable $O(sqrt{n/K})$ optimality gap, where $n$ is the number of variables and $K$ is the number of data duplication bearing the same intuition as the boosting algorithm. We use numerical experiments to demonstrate the effectiveness of our algorithm and several variants.



قيم البحث

اقرأ أيضاً

Column generation is often used to solve multi-commodity flow problems. A program for column generation always includes a module that solves a linear equation. In this paper, we address three major issues in solving linear problem during column gener ation procedure which are (1) how to employ the sparse property of the coefficient matrix; (2) how to reduce the size of the coefficient matrix; and (3) how to reuse the solution to a similar equation. To this end, we first analyze the sparse property of coefficient matrix of linear equations and find that the matrices occurring in iteration are very sparse. Then, we present an algorithm locSolver (for localized system solver) for linear equations with sparse coefficient matrices and right-hand-sides. This algorithm can reduce the number of variables. After that, we present the algorithm incSolver (for incremental system solver) which utilizes similarity in the iterations of the program for a linear equation system. All three techniques can be used in column generation of multi-commodity problems. Preliminary numerical experiments show that the incSolver is significantly faster than the existing algorithms. For example, random test cases show that incSolver is at least 37 times and up to 341 times faster than popular solver LAPACK.
In this paper, we develop a simple and fast online algorithm for solving a class of binary integer linear programs (LPs) arisen in general resource allocation problem. The algorithm requires only one single pass through the input data and is free of doing any matrix inversion. It can be viewed as both an approximate algorithm for solving binary integer LPs and a fast algorithm for solving online LP problems. The algorithm is inspired by an equivalent form of the dual problem of the relaxed LP and it essentially performs (one-pass) projected stochastic subgradient descent in the dual space. We analyze the algorithm in two different models, stochastic input and random permutation, with minimal technical assumptions on the input data. The algorithm achieves $Oleft(m sqrt{n}right)$ expected regret under the stochastic input model and $Oleft((m+log n)sqrt{n}right)$ expected regret under the random permutation model, and it achieves $O(m sqrt{n})$ expected constraint violation under both models, where $n$ is the number of decision variables and $m$ is the number of constraints. The algorithm enjoys the same performance guarantee when generalized to a multi-dimensional LP setting which covers a wider range of applications. In addition, we employ the notion of permutational Rademacher complexity and derive regret bounds for two earlier online LP algorithms for comparison. Both algorithms improve the regret bound with a factor of $sqrt{m}$ by paying more computational cost. Furthermore, we demonstrate how to convert the possibly infeasible solution to a feasible one through a randomized procedure. Numerical experiments illustrate the general applicability and effectiveness of the algorithms.
We introduce the online stochastic Convex Programming (CP) problem, a very general version of stochastic online problems which allows arbitrary concave objectives and convex feasibility constraints. Many well-studied problems like online stochastic p acking and covering, online stochastic matching with concave returns, etc. form a special case of online stochastic CP. We present fast algorithms for these problems, which achieve near-optimal regret guarantees for both the i.i.d. and the random permutation models of stochastic inputs. When applied to the special case online packing, our ideas yield a simpler and faster primal-dual algorithm for this well studied problem, which achieves the optimal competitive ratio. Our techniques make explicit the connection of primal-dual paradigm and online learning to online stochastic CP.
77 - Vincenzo Bonifaci 2016
We consider a system of nonlinear ordinary differential equations for the solution of linear programming (LP) problems that was first proposed in the mathematical biology literature as a model for the foraging behavior of acellular slime mold Physaru m polycephalum, and more recently considered as a method to solve LPs. We study the convergence time of the continuous Physarum dynamics in the context of the linear programming problem, and derive a new time bound to approximate optimality that depends on the relative entropy between project
We introduce Newton-ADMM, a method for fast conic optimization. The basic idea is to view the residuals of consecutive iterates generated by the alternating direction method of multipliers (ADMM) as a set of fixed point equations, and then use a nons mooth Newton method to find a solution; we apply the basic idea to the Splitting Cone Solver (SCS), a state-of-the-art method for solving generic conic optimization problems. We demonstrate theoretically, by extending the theory of semismooth operators, that Newton-ADMM converges rapidly (i.e., quadratically) to a solution; empirically, Newton-ADMM is significantly faster than SCS on a number of problems. The method also has essentially no tuning parameters, generates certificates of primal or dual infeasibility, when appropriate, and can be specialized to solve specific convex problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا