ﻻ يوجد ملخص باللغة العربية
Various inequalities (Boole inequality, Chung-Erdos inequality, Frechet inequality) for Kolmogorov (classical) probabilities are considered. Quantum counterparts of these inequalities are introduced, which have an extra `quantum correction term, and which hold for all quantum states. When certain sufficient conditions are satisfied, the quantum correction term is zero, and the classical version of these inequalities holds for all states. But in general, the classical version of these inequalities is violated by some of the quantum states. For example in bipartite systems, classical Boole inequalities hold for all rank one (factorizable) states, and are violated by some rank two (entangled) states. A logical approach to CHSH inequalities (which are related to the Frechet inequalities), is studied in this context.It is shown that CHSH inequalities hold for all rank one (factorizable) states, and are violated by some rank two (entangled) states. The reduction of the rank of a pure state by a quantum measurement with both orthogonal and coherent projectors, is studied. Bounds for the average rank reduction are given.
What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if
Inspired by the realignment or computable cross norm criterion, we present a new result about the characterization of quantum entanglement. Precisely, an interesting class of inequalities satisfied by all separable states of a bipartite quantum syste
We discuss the relation between fermion entanglement and bipartite entanglement. We first show that an exact correspondence between them arises when the states are constrained to have a definite local number parity. Moreover, for arbitrary states in
We analyze some features of alternative Hermitian and quasi-Hermitian quantum descriptions of simple and bipartite compound systems. We show that alternative descriptions of two interacting subsystems are possible if and only if the metric operator o
In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order $sqrt{n}$ (up to a logarithmic factor) when observables with n possible outcomes are used. A central tool in th