ﻻ يوجد ملخص باللغة العربية
Inspired by the realignment or computable cross norm criterion, we present a new result about the characterization of quantum entanglement. Precisely, an interesting class of inequalities satisfied by all separable states of a bipartite quantum system is derived. These inequalities induce new separability criteria that generalize the realignment criterion.
For two qubits and for general bipartite quantum systems, we give a simple spectral condition in terms of the ordered eigenvalues of the density matrix which guarantees that the corresponding state is separable.
Various inequalities (Boole inequality, Chung-Erdos inequality, Frechet inequality) for Kolmogorov (classical) probabilities are considered. Quantum counterparts of these inequalities are introduced, which have an extra `quantum correction term, and
A decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic form of the coefficients of a given Bell diagonal states and can be derived via a s
We investigate the separability of arbitrary dimensional tripartite sys- tems. By introducing a new operator related to transformations on the subsystems a necessary condition for the separability of tripartite systems is presented.
The entanglement detection via local measurements can be experimentally implemented. Based on mutually unbiased measurements and general symmetric informationally complete positive-operator-valued measures, we present separability criteria for bipart