ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial spline spaces of non-uniform bi-degree on T-meshes: Combinatorial bounds on the dimension

158   0   0.0 ( 0 )
 نشر من قبل Bernard Mourrain
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Deepesh Toshniwal




اسأل ChatGPT حول البحث

Polynomial splines are ubiquitous in the fields of computer aided geometric design and computational analysis. Splines on T-meshes, especially, have the potential to be incredibly versatile since local mesh adaptivity enables efficient modeling and approximation of local features. Meaningful use of such splines for modeling and approximation requires the construction of a suitable spanning set of linearly independent splines, and a theoretical understanding of the spline space dimension can be a useful tool when assessing possible approaches for building such splines. Here, we provide such a tool. Focusing on T-meshes, we study the dimension of the space of bivariate polynomial splines, and we discuss the general setting where local mesh adaptivity is combined with local polynomial degree adaptivity. The latter allows for the flexibility of choosing non-uniform bi-degrees for the splines, i.e., different bi-degrees on different faces of the T-mesh. In particular, approaching the problem using tools from homo-logical algebra, we generalize the framework and the discourse presented by Mourrain (2014) for uniform bi-degree splines. We derive combinatorial lower and upper bounds on the spline space dimension and subsequently outline sufficient conditions for the bounds to coincide.



قيم البحث

اقرأ أيضاً

The spline space $C_k^r(Delta)$ attached to a subdivided domain $Delta$ of $R^{d} $ is the vector space of functions of class $C^{r}$ which are polynomials of degree $le k$ on each piece of this subdivision. Classical splines on planar rectangular gr ids play an important role in Computer Aided Geometric Design, and spline spaces over arbitrary subdivisions of planar domains are now considered for isogeometric analysis applications. We address the problem of determining the dimension of the space of bivariate splines $C_k^r(Delta)$ for a triangulated region $Delta$ in the plane. Using the homological introduced by Billera (1988), we number the vertices and establish a formula for an upper bound on the dimension. There is no restriction on the ordering and we obtain more accurate approximations to the dimension than previous methods and furthermore, in certain cases even an exact value can be found. The construction makes also possible to get a short proof for the dimension formula when $kge 4r+1$, and the same method we use in this proof yields the dimension straightaway for many other cases.
For each $n$, let $text{RD}(n)$ denote the minimum $d$ for which there exists a formula for the general polynomial of degree $n$ in algebraic functions of at most $d$ variables. In 1945, Segre called for a better understanding of the large $n$ behavi or of $text{RD}(n)$. In this paper, we provide improved thresholds for upper bounds on $text{RD}(n)$. Our techniques build upon classical algebraic geometry to provide new upper bounds for small $n$ and, in doing so, fix gaps in the proofs of A. Wiman and G.N. Chebotarev in [Wim1927] and [Che1954].
We derive exact form of the piecewise-linear finite element stiffness matrix on general non-uniform meshes for the integral fractional Laplacian operator in one dimension, where the derivation is accomplished in the Fourier transformed space. With su ch an exact formulation at our disposal, we are able to numerically study some intrinsic properties of the fractional stiffness matrix on some commonly used non-uniform meshes (e.g., the graded mesh), in particular, to examine their seamless transition to those of the usual Laplacian.
Let $mathcal{F}_{n}^*$ be the set of Boolean functions depending on all $n$ variables. We prove that for any $fin mathcal{F}_{n}^*$, $f|_{x_i=0}$ or $f|_{x_i=1}$ depends on the remaining $n-1$ variables, for some variable $x_i$. This existent result suggests a possible way to deal with general Boolean functions via its subfunctions of some restrictions. As an application, we consider the degree lower bound of representing polynomials over finite rings. Let $fin mathcal{F}_{n}^*$ and denote the exact representing degree over the ring $mathbb{Z}_m$ (with the integer $m>2$) as $d_m(f)$. Let $m=Pi_{i=1}^{r}p_i^{e_i}$, where $p_i$s are distinct primes, and $r$ and $e_i$s are positive integers. If $f$ is symmetric, then $mcdot d_{p_1^{e_1}}(f)... d_{p_r^{e_r}}(f) > n$. If $f$ is non-symmetric, by the second moment method we prove almost always $mcdot d_{p_1^{e_1}}(f)... d_{p_r^{e_r}}(f) > lg{n}-1$. In particular, as $m=pq$ where $p$ and $q$ are arbitrary distinct primes, we have $d_p(f)d_q(f)=Omega(n)$ for symmetric $f$ and $d_p(f)d_q(f)=Omega(lg{n}-1)$ almost always for non-symmetric $f$. Hence any $n$-variate symmetric Boolean function can have exact representing degree $o(sqrt{n})$ in at most one finite field, and for non-symmetric functions, with $o(sqrt{lg{n}})$-degree in at most one finite field.
We show that no torus knot of type $(2,n)$, $n>3$ odd, can be obtained from a polynomial embedding $t mapsto (f(t), g(t), h(t))$ where $(deg(f),deg(g))leq (3,n+1) $. Eventually, we give explicit examples with minimal lexicographic degree.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا