ﻻ يوجد ملخص باللغة العربية
Let $mathcal{F}_{n}^*$ be the set of Boolean functions depending on all $n$ variables. We prove that for any $fin mathcal{F}_{n}^*$, $f|_{x_i=0}$ or $f|_{x_i=1}$ depends on the remaining $n-1$ variables, for some variable $x_i$. This existent result suggests a possible way to deal with general Boolean functions via its subfunctions of some restrictions. As an application, we consider the degree lower bound of representing polynomials over finite rings. Let $fin mathcal{F}_{n}^*$ and denote the exact representing degree over the ring $mathbb{Z}_m$ (with the integer $m>2$) as $d_m(f)$. Let $m=Pi_{i=1}^{r}p_i^{e_i}$, where $p_i$s are distinct primes, and $r$ and $e_i$s are positive integers. If $f$ is symmetric, then $mcdot d_{p_1^{e_1}}(f)... d_{p_r^{e_r}}(f) > n$. If $f$ is non-symmetric, by the second moment method we prove almost always $mcdot d_{p_1^{e_1}}(f)... d_{p_r^{e_r}}(f) > lg{n}-1$. In particular, as $m=pq$ where $p$ and $q$ are arbitrary distinct primes, we have $d_p(f)d_q(f)=Omega(n)$ for symmetric $f$ and $d_p(f)d_q(f)=Omega(lg{n}-1)$ almost always for non-symmetric $f$. Hence any $n$-variate symmetric Boolean function can have exact representing degree $o(sqrt{n})$ in at most one finite field, and for non-symmetric functions, with $o(sqrt{lg{n}})$-degree in at most one finite field.
The degree-$4$ Sum-of-Squares (SoS) SDP relaxation is a powerful algorithm that captures the best known polynomial time algorithms for a broad range of problems including MaxCut, Sparsest Cut, all MaxCSPs and tensor PCA. Despite being an explicit alg
In this paper we give lower bounds for the representation of real univariate polynomials as sums of powers of degree 1 polynomials. We present two families of polynomials of degree d such that the number of powers that are required in such a represen
Motivated by the resurgence of neural networks in being able to solve complex learning tasks we undertake a study of high depth networks using ReLU gates which implement the function $x mapsto max{0,x}$. We try to understand the role of depth in such
Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bo
Finding cliques in random graphs and the closely related planted clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynom