ﻻ يوجد ملخص باللغة العربية
The spline space $C_k^r(Delta)$ attached to a subdivided domain $Delta$ of $R^{d} $ is the vector space of functions of class $C^{r}$ which are polynomials of degree $le k$ on each piece of this subdivision. Classical splines on planar rectangular grids play an important role in Computer Aided Geometric Design, and spline spaces over arbitrary subdivisions of planar domains are now considered for isogeometric analysis applications. We address the problem of determining the dimension of the space of bivariate splines $C_k^r(Delta)$ for a triangulated region $Delta$ in the plane. Using the homological introduced by Billera (1988), we number the vertices and establish a formula for an upper bound on the dimension. There is no restriction on the ordering and we obtain more accurate approximations to the dimension than previous methods and furthermore, in certain cases even an exact value can be found. The construction makes also possible to get a short proof for the dimension formula when $kge 4r+1$, and the same method we use in this proof yields the dimension straightaway for many other cases.
Polynomial splines are ubiquitous in the fields of computer aided geometric design and computational analysis. Splines on T-meshes, especially, have the potential to be incredibly versatile since local mesh adaptivity enables efficient modeling and a
Diffeological spaces are natural generalizations of smooth manifolds, introduced by J.M.~Souriau and his mathematical group in the 1980s. Diffeological vector spaces (especially fine diffeological vector spaces) were first used by P. Iglesias-Zemmour
A standard construction in approximation theory is mesh refinement. For a simplicial or polyhedral mesh D in R^k, we study the subdivision D obtained by subdividing a maximal cell of D. We give sufficient conditions for the module of splines on D to
Let $ Y subseteq Bbb P^N $ be a possibly singular projective variety, defined over the field of complex numbers. Let $X$ be the intersection of $Y$ with $h$ general hypersurfaces of sufficiently large degrees. Let $d>0$ be an integer, and assume that
For a planar simplicial complex Delta contained in R^2, Schumaker proved that a lower bound on the dimension of the space C^r_k(Delta) of planar splines of smoothness r and polynomial degree at most k on Delta is given by a polynomial P_Delta(r,k), a