ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical Prediction of Stable Cluster-assembled CdSe Bilayer and its Functionalization with Co and Cr Adatoms

138   0   0.0 ( 0 )
 نشر من قبل Deepashri Saraf
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we present our results on bilayers assembled upon strategic placement of Cd$_6$Se$_6$ clusters. These bilayers are studied for their stability and electronic structure with the help of density functional theory and are further analyzed using Bardeen, Tersoff and Hamann formalism for their tunneling properties. Our calculations show that the hexagonal arrangement of these clusters prevails as the most stable geometry showing all real phonon modes. First-principles molecular dynamics studies on this 2D structure show that it remains intact even at room temperature. This bilayer shows an indirect semiconducting band gap of 1.28~eV with the current-voltage (I-V) characteristics similar to a tunnel diode. Further, we functionalized this bilayer using transition metal atoms, Co and Cr. The aim was to seek whether the bilayer sustains magnetism and how the concentration affects its electronic and magnetic properties. Co functionalization brings ferromagnetic ordering in the bilayer which turns near half-metallic upon increasing the concentration. On the other hand, Cr functionalization shows a transition from antiferro- to ferromagnetic ordering upon increasing the concentration. The I-V characteristics of all these functionalized bilayers show negative differential conductance similar to a tunnel diode.



قيم البحث

اقرأ أيضاً

We show that two major carrier excitation mechanisms are present in II-VI self-assembled quantum dots. The first one is related to direct excited state - ground state transition. It manifests itself by the presence of sharp and intense lines in the e xcitation spectrum measured from single quantum dots. Apart from these lines, we also observe up to four much broader excitation lines. The energy spacing between these lines indicates that they are associated with absorption related to longitudinal optical phonons. By analyzing resonantly excited photoluminescence spectra, we are able to separate the contributions from these two mechanisms. In the case of CdTe dots, the excited state - ground state relaxation is important for all dots in ensemble, while phonon - assisted processes are dominant for the dots with smaller lateral size.
We study spin dynamics of excitons confined in self-assembled CdSe quantum dots by means of optical orientation in magnetic field. At zero field the exciton emission from QDs populated via LO phonon-assisted absorption shows a circular polarization o f 14%. The polarization degree of the excitonic emission increases dramatically when a magnetic field is applied. Using a simple model, we extract the exciton spin relaxation times of 100 ps and 2.2 ns in the absence and presence of magnetic field, respectively. With increasing temperature the polarization of the QD emission gradually decreases. Remarkably, the activation energy which describes this decay is independent of the external magnetic field, and, therefore, of the degeneracy of the exciton levels in QDs. This observation implies that the temperature-induced enhancement of the exciton spin relaxation is insensitive to the energy level degeneracy and can be attributed to the same excited state distribution.
Using micro- and nano-scale resonantly excited PL and PLE, we study the excitonic structure of CdSe/ZnSe and CdTe/ZnTe self assembled quantum dots (SAQD). Strong resonantly enhanced PL is seen at one to four optic phonon energies below the laser exci tation energy. The maximum enhancement is not just one phonon energy above the peak energy distribution of QDs, but rather is 50 meV (for CdSe dots) or 100 meV (for CdTe) above the peak distribution. We interpret this unusual result as from double resonances associated with excited state to ground state energies being commensurate with LO phonons. Such a situation appears to occur only for the high-energy quantum dots.
We study the magnetization and the spin dynamics of the Cr$_7$Ni ring-shaped magnetic cluster. Measurements of the magnetization at high pulsed fields and low temperature are compared to calculations and show that the spin Hamiltonian approach provid es a good description of Cr$_7$Ni magnetic molecule. In addition, the phonon-induced relaxation dynamics of molecular observables has been investigated. By assuming the spin-phonon coupling to take place through the modulation of the local crystal fields, it is possible to evaluate the decay of fluctuations of two generic molecular observables. The nuclear spin-lattice relaxation rate $1/T_1$ directly probes such fluctuations, and allows to determine the magnetoelastic coupling strength.
87 - P. Czajka , M. Yao , C. Opeil 2016
High mobility phonon-glass semimetal $CuAgSe$ has shown promise in recent years as a potential low-temperature thermoelectric material. It exhibits reasonably strong thermoelectric performance as well as an extremely high carrier mobility, both of wh ich are enhanced when the material is doped with Ni at the Cu sites. The exact mechanism by which these enhancements result; however, is unclear. In order to further investigate the effects of chemical substitution on the materials thermoelectric properties, we have prepared and performed various measurements on $CuAgSe$ samples doped with Co and Cr according to the following compositional formulas: $Cu_{1-x}Co_{x}AgSe$ $(x=0.02, 0.05, 0.10)$ and $Cu_{1-x}Cr_{x}AgSe$ $(x=0.02, 0.05)$. Measurements of temperature and magnetic field dependent thermal conductivity, electrical resistivity, and Seebeck coefficient will be discussed. Our results reveal a remarkable sensitivity of $CuAgSe$s thermoelectric properties to chemical doping in general as well as a particular sensitivity to specific dopants. This demonstrated tunability of $CuAgSe$s various properties furthers the case that high mobility phonon glass-semimetals are strong candidates for potential low temperature thermoelectric applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا